
CS 61A Structure and Interpretation of Computer Programs
Summer 2021 Final

INSTRUCTIONS

This is your exam. Complete it either at exam.cs61a.org or, if that doesn’t work, by emailing course staff with your
solutions before the exam deadline.

This exam is intended for the student with email address <EMAILADDRESS>. If this is not your email address, notify
course staff immediately, as each exam is different. Do not distribute this exam PDF even after the exam ends, as
some students may be taking the exam in a different time zone.

For questions with circular bubbles, you should select exactly one choice.

You must choose either this option

Or this one, but not both!

For questions with square checkboxes, you may select multiple choices.

2 You could select this choice.

2 You could select this one too!

You may start your exam now. Your exam is due at <DEADLINE> Pacific Time. Go to the next page
to begin.

exam.cs61a.org

Exam generated for <EMAILADDRESS> 2

Preliminaries

You can complete and submit these questions before the exam starts.

(a) What is your full name?

(b) What is your student ID number?

(c) By writing my name below, I pledge on my honor that I will abide by the rules of this exam and will neither
give nor receive assistance. I understand that doing otherwise would be a disservice to my classmates,
dishonor me, and could result in me failing the class.

Exam generated for <EMAILADDRESS> 3

1. (8.0 points) Next Big Thing

(a) The following environment diagram was generated by a program:

In this series of questions, you’ll fill in the blanks of the program that follows so that its execution matches
the environment diagram.

def know(me):
def who(you):

light.___________ # (a)
return light[-3]()

light = [lambda: me, ___________] # (b)
return light

g = ___________ # (c)
g1
g.pop(___________) # (d)

Exam generated for <EMAILADDRESS> 4

i. (2.0 pt) Which of these could fill in blank (a)? Select all that apply!

2 append([lambda: you])

2 append(lambda you: you)

2 append([lambda you: you])

2 extend([lambda: you])

2 extend([lambda you: you])

2 append(lambda: 0)

2 extend([lambda: 0])

2 append(lambda: 1)

2 extend([lambda: 1])

ii. (2.0 pt) What line of code could go in blank (b)?

iii. (2.0 pt) Which of these could fill in blank (c)?

know(0)

know(1)

know

[lambda: 0, lambda: 1]

[lambda: 1, lambda: 0]

[]

iv. (2.0 pt) Which of these could fill in blank (d)? Select all that apply!

2 g[0]()

2 g[1]()

2 g[2]()

2 g[3]()

2 g[-1]()

2 g[-2]()

2 g[-3]()

2 1

2 0

2 2

Exam generated for <EMAILADDRESS> 5

2. (15.0 points) Linked Trees

(a) (7.0 points) Pruning

Definition: We call a tree shrinking if all of each node’s branches have fewer branches than the node
itself.

Write a function prune_shrinking_tree which takes in a tree t. It should return a new tree which is
shrinking, by pruning off the excess rightmost branches of each node. Do not prune more than the
required number.

def prune_shrinking_tree(t):
"""
>>> t1 = Tree(1, [Tree(2, [Tree(4), Tree(5), Tree(6)]), Tree(3)])
>>> prune_shrinking_tree(t1)
Tree(1, [Tree(2, [Tree(4)]), Tree(3)])
>>> t1
Tree(1, [Tree(2, [Tree(4), Tree(5), Tree(6)]), Tree(3)])
>>> t2 = Tree(1, [Tree(2), Tree(3)])
>>> prune_shrinking_tree(t2)
Tree(1, [Tree(2), Tree(3)])
>>> t3 = Tree(1, [Tree(2, [Tree(6, [Tree(8)]), Tree(7)]), Tree(3), Tree(4), Tree(5)])
>>> prune_shrinking_tree(t3)
Tree(1, [Tree(2, [Tree(6, [Tree(8)]), Tree(7)]), Tree(3), Tree(4), Tree(5)])
"""
def helper(t, k):

if ___________:
(a)

return ___________
(b)

else:
prune_ct = ___________(___________, ___________)

(c) (d) (e)
new_branches = [helper(b, prune_ct) for b in ___________]

(f)
return ___________

(g)
return helper(t, len(t.branches) + 1)

i. Which of these could fill in blank (a)?

t.is_leaf()

t is Link.empty

is_leaf(t)

t.is_leaf

len(t) == 0

len(t) == 1

t < 10

t == ''

Exam generated for <EMAILADDRESS> 6

ii. What line of code could go in blank (b)?

iii. Which of these could fill in blank (c)?

min

max

filter

map

sum

iv. Which of these could fill in blank (d)?

k

k - 1

k + 1

t.label

t.label - 1

t.label + 1

v. What line of code could go in blank (e)? You may not use min, max, filter, map, or sum in this
line.

vi. Which of these could fill in blank (f)?

t.branches[k+1:]

t.branches[k-1:]

t.branches

t.branches[:k]

t.branches[:]

t.branches[k:]

t.branches[:k+1]

t.branches[:k-1]

vii. What line of code could go in blank (g)? You may not using list slicing in for this blank.

Exam generated for <EMAILADDRESS> 7

(b) (2.0 points) Linked Add

Implement a function add_to_all which takes in a linked list s and a number x and returns a new version
of s with x added to each element.

Remember, you should not be mutating s!

You may not use the map function.

def add_to_all(s, x):
"""
>>> s = Link(3, Link(2, Link(5)))
>>> print(add_to_all(s, 1))
<4 3 6>
>>> print(add_to_all(s, 0))
<3 2 5>
"""
if ___________:

(i)
return s

return Link(___________, ___________)
(j) (k)

i. What line of code could go in blank (i)?

ii. What line of code could go in blank (j)?

iii. What line of code could go in blank (k)?

Exam generated for <EMAILADDRESS> 8

(c) (6.0 points) Digging Deep

Definition: the depth of a node is defined as the distance from the root of the tree to that node. For
example, the depth of the root node is 0, and the nodes at each of the branches of that root have depth 1.

Implement a function square_depths which takes in a Tree t and a linked list of increasing numbers
depths. It should mutate t by squaring the label of every node at each depth contained in list depths.

You may need to use add_to_all in this part.

def square_depths(t, depths):
"""
>>> t1 = Tree(2, [Tree(3, [Tree(4)]), Tree(5)])
>>> square_depths(t1, Link(0, Link(1)))
>>> t1
Tree(4, [Tree(9, [Tree(4)]), Tree(25)])
>>> t2 = Tree(2, [Tree(3, [Tree(4)]), Tree(5)])
>>> square_depths(t2, Link(2))
>>> t2
Tree(2, [Tree(3, [Tree(16)]), Tree(5)])
>>> t3 = Tree(2)
>>> square_depths(t3, Link.empty)
>>> t3
Tree(2)

"""
if ___________:

(l)
return

if depths.first == 0:
t.label = ___________

(m)
depths = ___________

(n)
for b in ___________:

(o)

(p)

i. What line of code could go in blank (l)?

ii. What line of code could go in blank (m)?

iii. What line of code could go in blank (n)?

Exam generated for <EMAILADDRESS> 9

iv. What line of code could go in blank (o)?

v. What line of code could go in blank (p)?

Exam generated for <EMAILADDRESS> 10

3. (16.0 points) Reconstructing Ed

(a) (4.0 points) Users

The class User represents those who login to Edstem and make a post. Fill in the blanks for the User,
Student, and Instructor classes such that the __repr__ method in the User class returns a string that
(when evaluated) creates a new instance with the same attributes as this one. See the doctests for some
examples.

Instructors are admins, which means that they can view all posts, even questions not posted by themselves.

class User:
"""
>>> #### test User.__repr__, Student, Instructor ####
>>> Instructor("Alex Kassil", "alexkassil@berkeley.edu")
Instructor('Alex Kassil', 'alexkassil@berkeley.edu')
>>> Student("Albert Xu", "albertxu3@berkeley.edu")
Student('Albert Xu', 'albertxu3@berkeley.edu')
"""

admin = False
class_name = "User"
def __init__(self, name, email):

self.name = name
self.email = email

def __repr__(self):
return ________________

(a)

class Student(User):
class_name = ________________

(b)

class Instructor(User):
admin = ________________

(c)
class_name = ________________

(d)

i. What line of code could go in blank (a)?

ii. What line of code could go in blank (b)?

iii. What line of code could go in blank (c)?

Exam generated for <EMAILADDRESS> 11

iv. What line of code could go in blank (d)?

Exam generated for <EMAILADDRESS> 12

(b) (6.0 points) Posts

The class Post represents a single post made to Edstem. Each post is a question by default, meaning it is
only visible to the person who asked it or to an admin. You can also specify the announcement instance
variable, which, if True, makes a post visible to everyone. For each post, the post ID represents the post
number in chronological order starting with 1. The icon is “(!)” for announcements and “(?)” for all other
posts.

Fill in the blanks for Post.view such that it prints the __str__ of the post after making necessary updates
to the post object. Also, fill in the blanks for Post.__str__ such that it returns a string that has the post
ID, followed by a colon, a space, the icon, a space, the post title, a space, the string “<>”, the email of the
User who made the post, a space, the “<> Total Views:”, a space, and finally the total number of times
the post has been viewed. See the doctests for some examples.

class Post:
"""
>>> #### setup ####
>>> alex = Instructor("Alex Kassil", "alexkassil@berkeley.edu")
>>> catherine = Student("Catherine Cang", "catherinecang@berkeley.edu")
>>> Post.id = 1 # reset Post IDs
>>> p1 = Post("Introductions", alex, True)
>>> #### test Post.__str__ and Post.view ####
>>> p1.views
{}
>>> p1.view(alex)
1: (!) Introductions <> alexkassil@berkeley.edu <> Total Views: 1
>>> p1.view(catherine)
1: (!) Introductions <> alexkassil@berkeley.edu <> Total Views: 2
>>> p1.views
{'alexkassil@berkeley.edu': 1, 'catherinecang@berkeley.edu': 1}
"""

id = 1
def __init__(self, title, user, announcement=False):

self.title = title
self.user = user
self.announcement = announcement
self.views = {}
self.total_views = 0
self.id = ________________

(e)

(f)

def __str__(self):
if self.announcement:

icon = "(!)"
else:

icon = "(?)"
return ________________________________

(g)

def view(self, user):
if user.email not in self.views:

self.views[user.email] = 0
self.views[user.email] += 1
self.total_views = ________________

Exam generated for <EMAILADDRESS> 13

(h)
print(________________)

(i)

i. What line of code could go in blank (e)?

ii. What line of code could go in blank (f)?

iii. What line of code could go in blank (g)?

iv. What line of code could go in blank (h)?

v. What line of code could go in blank (i)?

Exam generated for <EMAILADDRESS> 14

(c) (6.0 points) Edstem

The class Edstem represents a course Q&A forum, with some set of users and posts.

Fill in add_user and add_post such that Users and Posts are saved to the Edstem instance. Then, fill in
login_and_view_all. Only added users can log in. After a successful login, a user may view all posts that
are visible to them (all announcements and their own questions if they are not an admin, or everything if
they are an admin). Also, fill in show_stats in order to print out the __str__ of each Post, followed by a
space, the string “<> Unique Viewers:”, a space, and the number of unique viewers.

class Edstem:
"""
>>> #### setup ####
>>> alex = Instructor("Alex Kassil", "alexkassil@berkeley.edu")
>>> albert = Student("Albert Xu", "albertxu3@berkeley.edu")
>>> catherine = Student("Catherine Cang", "catherinecang@berkeley.edu")
>>> Post.id = 1 # reset Post IDs
>>> p1 = Post("Introductions", alex, True)
>>> p2 = Post("HW 1 Deadline", catherine)
>>> p3 = Post("Diagnostic Alternate", albert)
>>> cs61a = Edstem("CS 61A")
>>> cs61a.add_user(alex); cs61a.add_user(catherine); cs61a.add_user(albert);
>>> cs61a.add_post(p1); cs61a.add_post(p2); cs61a.add_post(p3);
>>> #### test Edstem.add_user ####
>>> vanshaj = Student('Vanshaj Singhania', 'vanshaj@berkeley.edu')
>>> len(cs61a.users)
3
>>> cs61a.add_user(vanshaj)
>>> len(cs61a.users)
4
>>> cs61a.users['vanshaj@berkeley.edu']
Student('Vanshaj Singhania', 'vanshaj@berkeley.edu')
>>> #### test Edstem.login_and_view_all ####
>>> cs61a.login_and_view_all("albertxu3@berkeley.edu")
1: (!) Introductions <> alexkassil@berkeley.edu <> Total Views: 1
3: (?) Diagnostic Alternate <> albertxu3@berkeley.edu <> Total Views: 1
>>> cs61a.login_and_view_all("alexkassil@berkeley.edu")
1: (!) Introductions <> alexkassil@berkeley.edu <> Total Views: 2
2: (?) HW 1 Deadline <> catherinecang@berkeley.edu <> Total Views: 1
3: (?) Diagnostic Alternate <> albertxu3@berkeley.edu <> Total Views: 2
>>> try:
... cs61a.login_and_view_all("timothyktu@berkeley.edu")
... except:
... print("This user is not enrolled!")
...
This user is not enrolled!
"""

def __init__(self, course):
self.course = course
self.users = {}
self.posts = []

def add_user(self, user):

(j)

Exam generated for <EMAILADDRESS> 15

def add_post(self, post):
self.posts.append(post)

def login_and_view_all(self, email):
assert ________________

(k)
for post in self.posts:

if ________________ or ________________ or ________________:
(l) (m) (n)
post.view(self.users[email])

def show_stats(self):
for post in self.posts:

print(post, "<> Unique Viewers:", len(________________))
(o)

i. What line of code could go in blank (j)?

ii. What line of code could go in blank (k)?

iii. What line of code could go in blank (l)?

iv. What line of code could go in blank (m)?

v. What line of code could go in blank (n)?

vi. What line of code could go in blank (o)?

Exam generated for <EMAILADDRESS> 16

4. (11.0 points) Ed Analysis

Ed is a Q&A Forum. The students table describes the Name and Email for each student enrolled in the CS
61A Ed. The posts table describes the email (of the poster), title, and timestamp for each post made on the
CS 61A Ed. Emails are unique to students – each email can only be associated with one student.

You may assume that all timestamps are all unique, but titles in posts may not be unique.

CREATE TABLE students AS
SELECT "Amritansh Saraf" AS name, "amritansh@cs61a.org" AS email UNION
SELECT "Cindy Lin" , "cclin@cs61a.org" UNION
SELECT "Vanshaj Singhania" , "vanshaj@cs61a.org" UNION
SELECT "Marie Chorpita" , "chorpita@cs61a.org";

CREATE TABLE posts AS
SELECT "vanshaj@cs61a.org" AS email, "Scheme Project EC" AS title, 1627774233 as timestamp UNION
SELECT "chorpita@cs61a.org" , "Signing up for Tutoring" , 1627775133 UNION
SELECT "cclin@cs61a.org" , "Doctors Hate Her!" , 1627774133 UNION
SELECT "cclin@cs61a.org" , "Doctors Hate Her!" , 1627774135 UNION
SELECT "vanshaj@cs61a.org" , "Scheme Project EC" , 1627784233;

(a) (2.0 points) Broken Timestamps

Definition: A timestamp represents a moment in time based on how many seconds (not including leap
seconds) have passed since 00:00:00 UTC on January 1, 1970. So, for example, 00:01:00 UTC on January
1, 1970 would be represented as the timestamp 60. The start of the regular exam time for the Summer
2021 61A final exam, 17:00:00 UTC-7 on August 12, 2021, would be represented as 1628812800.

The timestamps in the posts table are all a week too early, and we need to fix them! Write a SQL query
that selects the email, title, and timestamp columns, while adding 7 days to the timestamp.

Hint: there are 604800 seconds in 7 days.

You may use both commas and AND inside your answers.

Output for the sample table:

SELECT ___________;
-- (a)

i. What line of code could fill in the blank (a)?

Exam generated for <EMAILADDRESS> 17

(b) (4.0 points) First

Complete a SQL query that selects a three-column table with the student name, title, and timestamp of
the first post made by each student.

You may use both commas and AND inside your answers.

Output for the sample table:

SELECT ___________ FROM students AS a, posts AS p WHERE ___________ GROUP BY ___________;
-- (b) (c) (d)

i. What line of code could fill in the blank (b)?

ii. What line of code could fill in the blank (c)?

iii. What line of code could fill in the blank (d)?

Exam generated for <EMAILADDRESS> 18

(c) (5.0 points) Duplicate Detection

Definition: Duplicate Posts are two posts that are made by the same student with the same title and
within 10 seconds of each other. Recall that the timestamp values are measured in seconds.

Create a four-column table of author’s name, post title, and both timestamps for each pair of duplicate
posts in the posts table. Only select pairs where the first post occurs less than or equal to 10 seconds
before the second post (e.g., don’t include duplicates in the other direction)

You may not use AND, NOT, OR or AS in any of your below answers.

Output for the sample table:

SELECT z.name, x.title, x.timestamp, y.timestamp
FROM ___________ AS x, ___________ AS y, ___________ AS z

-- (e) (f) (g)
WHERE ___________ AND ___________ AND ___________ AND ___________ AND ___________;

-- (h) (i) (j) (k) (l)

i. What line of code could fill in the blank (e)?

ii. What line of code could fill in the blank (f)?

iii. What line of code could fill in the blank (g)?

iv. What line of code could fill in the blank (h)?

v. What line of code could fill in the blank (i)?

vi. What line of code could fill in the blank (j)?

Exam generated for <EMAILADDRESS> 19

vii. What line of code could fill in the blank (k)?

viii. What line of code could fill in the blank (l)?

Exam generated for <EMAILADDRESS> 20

5. (13.0 points) Scheme

(a) (4.0 points) If Fibonacci is so great...

Definition: Each element of the fibonacci2 sequence is defined as twice the absolute value of the
difference between the previous two elements. Assume that the 0th element of the fibonacci2 sequence is
0, and the 1st element is 1.

Implement the function fib2, which takes in one parameter n, a non-negative integer, and returns the nth
element of the fibonacci2 sequence.

Reminder: Scheme has a built in procedure abs which returns the absolute value of the argument that is
passed in.

(define (fib2 n)
(if ___________ n

; (a)
(___________ ___________ (___________ (- ___________ ___________)))))

; (b) (c) (d) (e) (f)
(expect (fib2 0) 0)
(expect (fib2 1) 1)
(expect (fib2 2) 2)
(expect (fib2 3) 2)
(expect (fib2 4) 0)
(expect (fib2 5) 4)

i. What line of code could fill in the blank (a)?

ii. Which of these could fill in blank (b)?

*

-

square

fib2

fib

iii. What line of code could fill in the blank (c)?

iv. What line of code could fill in the blank (d)?

Exam generated for <EMAILADDRESS> 21

v. What line of code could fill in the blank (e)?

vi. What line of code could fill in the blank (f)?

Exam generated for <EMAILADDRESS> 22

(b) (7.0 points) The (n-1)-al Countdown

Definition: The countdown sequence of a number n is the sequence starting at n and descending to 0. For
example, the countdown sequence of 3 is 3 2 1 0.

Implement a function countdowns which takes in a scheme list lst of non-negative integers and returns a
list which is the concatenation of the countdown sequences of each element in lst.

(define (countdowns lst)
(cond ((null? lst) ___________)

; (k)
((> ___________ 0) (cons (car lst)

; (l))
(countdowns ___________)))

; (m)
(else (cons 0 ___________))))

; (o)
(expect (countdowns '(3)) (3 2 1 0))
(expect (countdowns '(2 0 3)) (2 1 0 0 3 2 1 0))
(expect (countdowns '()) ())

i. What line of code could fill in the blank (k)?

ii. What line of code could fill in the blank (l)?

iii. What line of code could fill in the blank (m)?

iv. What line of code could fill in the blank (n)?

Exam generated for <EMAILADDRESS> 23

(c) (2.0 points) Tail Recursion?

i. We would like to modify the implementation of countdowns to make the function tail recursive. This
could include modifications to the skeleton code. Is this possible?

countdowns is not tail recursive but can be made tail recursive

countdowns cannot be made tail recursive

countdowns is already tail recursive

Exam generated for <EMAILADDRESS> 24

6. (8.0 points) All Links

(a) Implement a generator function all_links, which takes in nums, a list of equal-length lists. all_links
should yield all linked lists s that can be constructed such that the first element of s is the first element of
one of the lists in nums, the second element of s is the second element of one of the lists in nums, and so
on. Lists can be yielded in any order. You can assume that nums is a non-empty list.

For example, for the second doctest all_links([[0, 2], [1, 3]]), there are four total linked lists we
should yield. Link(0, Link(2)) is generated from using the first element from the first list and the second
element from the first list. Link(0, Link(3)) is generated with the first element from the first list and
the second element from the second list. Link(1, Link(2)) and Link(1, Link(3)) get the first element
from the second list and the second element from the first and second lists respectively.

def all_links(nums):
"""
>>> list(all_links([[0], [1], [2]]))
[Link(0), Link(1), Link(2)]
>>> list(all_links([[0, 2], [1, 3]]))
[Link(0, Link(2)), Link(0, Link(3)), Link(1, Link(2)), Link(1, Link(3))]
"""
if len(nums[0]) == 0:

(a)

else:
rests = [___________ for x in nums]

(b)
for first in [x[0] for x in nums]:

for item in ___________:
(c)

(d)

i. What line of code could fill in the blank (a)?

ii. Which of these could fill in blank (b)?

x[1:]

x[1]

nums[1]

nums[1:]

nums[-1]

nums[:-1]

x[-1]

x[:-1]

Exam generated for <EMAILADDRESS> 25

iii. What line of code could fill in the blank (c)?

iv. What line of code could fill in the blank (d)?

Exam generated for <EMAILADDRESS> 26

7. (9.0 points) Merger

(a) (9.0 points)

Consider the function merger, which returns the result of merging all the terms in a sequence using f, a
two-argument function. The function f is applied to the first and second elements until there is only one
element in the subsequence.
For example, merging the sequence 1, 2, 3 with the function lambda x, y: x + y would return the
result 6.

Now consider the sequence of ascending integers: 1, 2, 3, ... k and all of its unique ascending sub-
sequences of at least length two. For example, the sequence [1,2,3,4] has the following unique ascend-
ing subsequences of length at least two: [1,2], [1,3], [1,4], [1,2,3], [1,2,4], [1,3,4], [2,3],
[2,4], [2,3,4], [3,4], [1,2,3,4]. Our goal is to count the number of subsequences of merger that
result in exactly N when merging with f.

For the first doctest, f is lambda x, y: x + y, N is 6, and K is 4, so only [1,2,3] and [2,4] add up to
6, meaning count_merger(6, 4, lambda x, y: x + y) returns 2.

Write a function count_merger that returns the number of ways to make exactly N using at least two
unique, ascending integers from range 1 to K (inclusive) and a function f which is a two-argument function.

def count_merger(n,k,f):
"""
Returns the number of ways to make exactly N using at least two unique,
ascending integers from range 1 to K (inclusive) and a function f that
accepts two integers as arguments and returns an integer.
Assume K >= 1.
>>> from operator import add, mul, sub
>>> add1_mult = lambda x, y: (x + 1) * y
>>> count_merger(6, 4, lambda x, y: x + y) # 1 + 2 + 3 = 6, 2 + 4 = 6
2
>>> count_merger(36, 6, mul) # 1 * 2 * 3 * 6; 2 * 3 * 6
2
>>> count_merger(36, 6, add)
0
>>> count_merger(36, 6, add1_mult) # (5 + 1) * 6
1
>>> count_merger(24, 3, lambda x, y: 24) # f(1, 2); f(f(1, 2), 3); f(1, 3); f(2, 3)
4
>>> count_merger(1, 1, lambda x, y: x)
0
>>> count_merger(-2, 5, sub) # 1 - 3; 2 - 4; 3 - 5
3
"""
def helper(start, i):

if i > k:
return 0

a = helper(start, i + 1)
b = helper(______, i + 1)

(a)
if ___________ == n:

(b)
return ___________

(c)
else:

return ___________
(d)

Exam generated for <EMAILADDRESS> 27

total = 0
i = 1
while ___________:

(e)
total += ___________

(f)
i += 1

return total

i. What line of code could go in blank (a)?

ii. What line of code could go in blank (b)?

start

start + 1

helper(start, i)

helper(start, i + 1)

f(start, i)

f(start, i + 1)

iii. What line of code could go in blank (c)?

iv. What line of code could go in blank (d)?

v. What line of code could go in blank (e)?

i > 0

k > 0

i >= 0

k >= 0

i > k

i < k

i >= k

i <= k

Exam generated for <EMAILADDRESS> 28

vi. Which of these could fill in blank (f)?

helper(i, i)

helper(i, i + 1)

helper(i, total + 1)

helper(total, i)

helper(total, i + 1)

helper(total, total + 1)

Exam generated for <EMAILADDRESS> 29

8. Extra Sus

(a) Amogus’s Dilemma

In this extra credit problem, you may choose one of two options.

• Mark the choice of “Impostor” and write a positive integer in the blank below. The one student who
writes the smallest unique positive integer will receive three (3) extra credit points but only if fewer
than 90% of students choose the next option.

• Mark the choice of “Crewmate”. If at least 90% of students choose this option, all students who chose
this option will receive one (1) extra credit point and those who marked the choice to “Impostor” will
receive zero (0) extra credit points.

i.

Impostor

Crewmate

ii. If you marked Impostor, type in a number.

Exam generated for <EMAILADDRESS> 30

No more questions.

