
CS 61A Interpreters, Tail Calls
Spring 2022 Discussion 11: April 6, 2022 Solutions

Tail Recursion
When writing a recursive procedure, it’s possible to write it in a tail recursive way,
where all of the recursive calls are tail calls. A tail call occurs when a function
calls another function as the last action of the current frame.

Consider this implementation of factorial that is not tail recursive:

(define (factorial n)
(if (= n 0)

1
(* n (factorial (- n 1)))))

The recursive call occurs in the last line, but it is not the last expression evaluated.
After calling (factorial (- n 1)), the function still needs to multiply that result
with n. The final expression that is evaluated is a call to the multiplication function,
not factorial itself. Therefore, the recursive call is not a tail call.

Here’s a visualization of the recursive process for computing (factorial 6) :

(factorial 6)
(* 6 (factorial 5))
(* 6 (* 5 (factorial 4)))
(* 6 (* 5 (* 4 (factorial 3))))
(* 6 (* 5 (* 4 (* 3 (factorial 2)))))
(* 6 (* 5 (* 4 (* 3 (* 2 (factorial 1))))))
(* 6 (* 5 (* 4 (* 3 (* 2 1)))))
(* 6 (* 5 (* 4 (* 3 2))))
(* 6 (* 5 (* 4 6)))
(* 6 (* 5 24))
(* 6 120)
720

The interpreter first must reach the base case and only then can it begin to calculate
the products in each of the earlier frames.

We can rewrite this function using a helper function that remembers the temporary
product that we have calculated so far in each recursive step.



2 Interpreters, Tail Calls

(define (factorial n)
(define (fact-tail n result)
(if (= n 0)

result
(fact-tail (- n 1) (* n result))))

(fact-tail n 1))

fact-tail makes a single recursive call to fact-tail, and that recursive call is the
last expression to be evaluated, so it is a tail call. Therefore, fact-tail is a tail
recursive process.

Here’s a visualization of the tail recursive process for computing (factorial 6):

(factorial 6)
(fact-tail 6 1)
(fact-tail 5 6)
(fact-tail 4 30)
(fact-tail 3 120)
(fact-tail 2 360)
(fact-tail 1 720)
(fact-tail 0 720)
720

The interpreter needed less steps to come up with the result, and it didn’t need to
re-visit the earlier frames to come up with the final product.

Tail Call Optimization
When a recursive procedure is not written in a tail recursive way, the interpreter
must have enough memory to store all of the previous recursive calls.

For example, a call to the (factorial 3) in the non tail-recursive version must
keep the frames for all the numbers from 3 down to the base case, until it’s finally
able to calculate the intermediate products and forget those frames:

Example Tree

For non tail-recursive procedures, the number of active frames grows proportionally
to the number of recursive calls. That may be fine for small inputs, but imagine
calling factorial on a large number like 10000. The interpreter would need enough
memory for all 1000 calls!

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.



Interpreters, Tail Calls 3

Fortunately, proper Scheme interpreters implement tail-call optimization as a re-
quirement of the language specification. TCO ensures that tail recursive procedures
can execute with a constant number of active frames, so programmers can call them
on large inputs without fear of exceeding the available memory.

When the tail recursive factorial is run in an interpreter with tail-call optimiza-
tion, the interpreter knows that it does not need to keep the previous frames around,
so it never needs to store the whole stack of frames in memory:

Example Tree

Tail-call optimization can be implemented in a few ways:

1. Instead of creating a new frame, the interpreter can just update the values of
the relevant variables in the current frame (like n and result for the fact
-tail procedure). It reuses the same frame for the entire calculation, con-
stantly changing the bindings to match the next set of parameters.

2. How our 61A Scheme interpreter works: The interpreter builds a new frame
as usual, but then replaces the current frame with the new one. The old frame
is still around, but the interpreter no longer has any way to get to it. When
that happens, the Python interpreter does something clever: it recycles the old
frame so that the next time a new frame is needed, the system simply allocates
it out of recycled space. The technical term is that the old frame becomes
“garbage”, which the system “garbage collects” behind the programmer’s back.

Tail Context
When trying to identify whether a given function call within the body of a function
is a tail call, we look for whether the call expression is in tail context.

Given that each of the following expressions is the last expression in the body of
the function, the following expressions are tail contexts:

1. the second or third operand in an if expression
2. any of the non-predicate sub-expressions in a cond expression (i.e. the second

expression of each clause)
3. the last operand in an and or an or expression
4. the last operand in a begin expression’s body
5. the last operand in a let expression’s body

For example, in the expression (begin (+ 2 3) (- 2 3) (* 2 3)), (* 2 3) is a
tail call because it is the last operand expression to be evaluated.

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.



4 Interpreters, Tail Calls

Tail calls
Q1: Is Tail Call

For each of the following procedures, identify whether it contains a recursive call in
a tail context. Also indicate if it uses a constant number of active frames.

(define (question-a x)
(if (= x 0) 0

(+ x (question-a (- x 1)))))

In the recursive case, the last expression that is evaluated is a call to +. Therefore,
the recursive call is not in tail context, and each of the frames remain active. This
procedure uses a number of active frames proportional to the input x.

(define (question-b x y)
(if (= x 0) y

(question-b (- x 1) (+ y x))))

The recursive call is the third operand in the if expression, so it is in tail context.
This means that the last expression that will be evaluated in the body of this
procedure is the recursive procedure call, so this procedure can be run with a
constant number of active frames.

(define (question-c x y)
(if (> x y)

(question-c (- y 1) x)
(question-c (+ x 10) y)))

The recursive calls are the second and third operands of the if expression. Only
one of these calls is actually evaluated, and whichever one it is will be the last
expression evaluated in the body of the procedure. This procedure therefore can be
run with a constant number of active frames.

Note that if you actually try and evaluate this procedure, it will never terminate.
But at least it won’t crash from hitting max recursion depth!

(define (question-d n)
(if (question-d n)

(question-d (- n 1))
(question-d (+ n 10))))

The second and third recursive calls are in tail context, but the first is not. Since
not all the recursive calls are tail calls, this procedure requires active frames for all
of the recursive calls.

Additionally, this question will actually lead to infinite recursion because the if

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.



Interpreters, Tail Calls 5

condition will never reach a base case!

(define (question-e n)
(cond ((<= n 1) 1)

((question-e (- n 1)) (question-e (- n 2)))
(else (begin (print 2) (question-e (- n 3))))))

The second and third recursive calls are the second expressions in a clause, so they
are in tail context. However, the first recursive call is not in tail context. Since not
all recursive calls are tail calls, this procedure is not tail recursive and does not use
a constant number of active frames.

Q2: Sum

Write a tail recursive function that takes in a Scheme list and returns the numerical
sum of all values in the list. You can assume that the list contains only numbers
(no nested lists).

scm> (sum '(1 2 3))
6
scm> (sum '(10 -3 4))
11

(define (sum lst)
(define (sum-sofar lst current-sum)
(if (null? lst)

current-sum
(sum-sofar (cdr lst) (+ (car lst) current-sum))))

(sum-sofar lst 0)

)

; ALTERNATE SOLUTION
(define (sum lst)

(cond
((null? lst) 0)
((null? (cdr lst)) (car lst))
(else (sum (cons (+ (car lst) (car (cdr lst))) (cdr (cdr lst))

)))
)

)

(expect (sum '(1 2 3)) 6)
(expect (sum '(10 -3 4)) 11)

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.



6 Interpreters, Tail Calls

Video walkthrough

Q3: Reverse

Write a tail-recursive function reverse that takes in a Scheme list a returns a
reversed copy. Hint: use a helper function!

scm> (reverse '(1 2 3))
(3 2 1)
scm> (reverse '(0 9 1 2))
(2 1 9 0)

(define (reverse lst)
(define (reverse-tail sofar rest)
(if (null? rest)

sofar
(reverse-tail (cons (car rest) sofar) (cdr rest))))

(reverse-tail nil lst)
)

(expect (reverse '(1 2 3)) (3 2 1))
(expect (reverse '(0 9 1 2)) (2 1 9 0))

Calculator
An interpreter is a program that understands other programs. Today, we will ex-
plore how to build an interpreter for Calculator, a simple language that uses a
subset of Scheme syntax.

The Calculator language includes only the four basic arithmetic operations: +, -,
*, and /. These operations can be nested and can take any numbers of arguments.
A few examples of calculator expressions and their corresponding values are shown
below.

calc> (+ 2 2)
4

calc> (- 5)
-5

calc> (* (+ 1 2) (+ 2 3))
15

The reader component of an interpreter parses input strings and represents them
as data structures in the implementing language. In this case, we need to represent
Calculator expressions as Python objects. To represent numbers, we can just use

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

https://youtu.be/9y7rnuYp-DU?t=9m27s


Interpreters, Tail Calls 7

Python numbers. To represent the names of the arithmetic procedures, we can use
Python strings (e.g. '+').

To represent Scheme lists in Python, we will use the Pair class. A Pair instance
holds exactly two elements. Accordingly, the Pair constructor takes in two argu-
ments, and to make a list we must nest calls to the constructor and pass in nil as
the second element of the last pair. Note that in the Python code, nil is bound to
a special user-defined object that represents an empty list, whereas nil in Scheme
is actually an empty list.

>>> Pair('+', Pair(2, Pair(3, nil)))
Pair('+', Pair(2, Pair(3, nil)))

Each Pair instance has two instance attributes: first and rest, which are bound
to the first and second elements of the pair respectively.

>>> p = Pair('+', Pair(2, Pair(3, nil)))
>>> p.first
'+'
>>> p.rest
Pair(2, Pair(3, nil))
>>> p.rest.first
2

Pair is very similar to Link, the class we developed for representing linked lists
– they have the same attribute names first and rest and are represented very
similarly. Here’s an implementation of what we described:

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.



8 Interpreters, Tail Calls

class Pair:
"""Represents the built-in pair data structure in Scheme."""
def __init__(self, first, rest):

self.first = first
if not scheme_valid_cdrp(rest):

raise SchemeError("cdr can only be a pair, nil, or a
promise but was {}".format(rest))

self.rest = rest

def map(self, fn):
"""Maps fn to every element in a list, returning a new
Pair.

>>> Pair(1, Pair(2, Pair(3, nil))).map(lambda x: x * x)
Pair(1, Pair(4, Pair(9, nil)))
"""
assert isinstance(self.rest, Pair) or self.rest is nil, \

"rest element in pair must be another pair or nil"
return Pair(fn(self.first), self.rest.map(fn))

def __repr__(self):
return 'Pair({}, {})'.format(self.first, self.rest)

class nil:
"""Represents the special empty pair nil in Scheme."""
def map(self, fn):

return nil
def __getitem__(self, i):

raise IndexError('Index out of range')
def __repr__(self):

return 'nil'

nil = nil() # this hides the nil class *forever*

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.



Interpreters, Tail Calls 9

Q4: Using Pair

Answer the following questions about a Pair instance representing the Calculator
expression (+ (- 2 4) 6 8).

Write out the Python expression that returns a Pair representing the given expres-
sion:

>>> Pair('+', Pair(Pair('-', Pair(2, Pair(4, nil))), Pair(6, Pair(8,
nil))))

What is the operator of the call expression?

•

If the Pair you constructed in the previous part was bound to the name p, how
would you retrieve the operator?

p.first

What are the operands of the call expression?

An expression (- 2 4), the number 6, the number 8.

If the Pair you constructed was bound to the name p, how would you retrieve a
list containing all of the operands?

p.rest

How would you retrieve only the first operand?

p.rest.first

Q5: New Procedure

Suppose we want to add the // operation to our Calculator interpreter. Recall from
Python that // is the floor division operation, so we are looking to add a built-in
procedure // in our interpreter such that (// dividend divisor) returns dividend
// divisor. Similarly we handle multiple inputs as illustrated in the following ex-
ample (// dividend divisor1 divisor2 divisor3) evaluates to (((dividend //
divisor1) // divisor2) // divisor3). For this problem you can assume you are always
given at least 1 divisor. Also for this question do you need to call calc_eval inside
floor_div? Why or why not?

calc> (// 1 1)
1
calc> (// 5 2)
2
calc> (// 28 (+ 1 1) 1)
14

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.



10 Interpreters, Tail Calls

def calc_eval(exp):
if isinstance(exp, Pair): # Call expressions

return calc_apply(calc_eval(exp.first), exp.rest.map(
calc_eval))
elif exp in OPERATORS: # Names

return OPERATORS[exp]
else: # Numbers

return exp

def floor_div(expr):
"""
>>> calc_eval(Pair("//", Pair(10, Pair(10, nil))))
1
>>> calc_eval(Pair("//", Pair(20, Pair(2, Pair(5, nil)))))
2
>>> calc_eval(Pair("//", Pair(6, Pair(2, nil))))
3
"""
dividend = expr.first
expr = expr.rest
while expr != nil:

divisor = expr.first
dividend //= divisor
expr = expr.rest

return dividend

OPERATORS = { "//": floor_div }

Q6: New Form

Suppose we want to add handling for comparison operators >, <, and = as well as
and expressions to our Calculator interpreter. These should work the same way
they do in Scheme.

calc> (and (= 1 1) 3)
3
calc> (and (+ 1 0) (< 1 0) (/ 1 0))
#f

i. Are we able to handle expressions containing the comparison operators (such
as <, >, or =) with the existing implementation of calc_eval? Why or why
not?

Comparison expressions are regular call expressions, so we need to evaluate the
operator and operands and then apply a function to the arguments. Therefore,
we do not need to change calc_eval. We simply need to add new entries to the

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.



Interpreters, Tail Calls 11

OPERATORS dictionary that map '<', '>', and '=' to functions that perform the
appropriate comparison operation.

ii. Are we able to handle and expressions with the existing implementation of
calc_eval? Why or why not?

Hint: Think about the rules of evaluation we’ve implemented in
calc_eval. Is anything different about and?

Since and is a special form that short circuits on the first false-y operand, we cannot
handle these expressions the same way we handle call expressions. We need to add
special handling for combinations that don’t evaluate all the operands.

iii. Now, complete the implementation below to handle and expressions. You
may assume the conditional operators (e.g. <, >, =, etc) have already been
implemented for you.

def calc_eval(exp):
if isinstance(exp, Pair):

if exp.first == 'and': # and expressions
return eval_and(exp.rest)

else: # Call expressions
return calc_apply(calc_eval(exp.first), exp.rest.map(

calc_eval))
elif exp in OPERATORS: # Names

return OPERATORS[exp]
else: # Numbers

return exp

def eval_and(operands):
"""
>>> calc_eval(Pair("and", Pair(1, nil)))
1
>>> calc_eval(Pair("and", Pair(False, Pair("1", nil))))
False
"""
curr, val = operands, True
while curr is not nil:

val = calc_eval(curr.first)
if val is False:

return False
curr = curr.rest

return val

OPERATORS = {}

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.



12 Interpreters, Tail Calls

Q7: Saving Values

In the last few questions we went through a lot of effort to add operations so we
can do most arithmetic operations easily. However it’s a real shame we can’t store
these values. So for this question let’s implement a define special form that saves
values to variable names. This should work like variable assignment in Scheme;
this means that you should expect inputs of the form(define <variable_name>
<value>) and these inputs should return the symbol corresponding to the variable
name.

calc> (define a 1)
a
calc> a
1

This is a more involved change. Here are the 4 steps involved: 1. Add a bindings
dictionary that will store the names and correspondings values of variables as

key-value pairs of the dictionary. 2. Identify when the define form is given to
calc_eval. 3. Allow variables to be looked up in calc_eval. 4. Write the
function eval_define which should actually handle adding names and values to
the bindings dictionary.

We’ve done step 1 for you. Now you’ll do the remaining steps in the code below.

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.



Interpreters, Tail Calls 13

bindings = {}
def calc_eval(exp):

if isinstance(exp, Pair):
if exp.first == 'and': # and expressions

return eval_and(exp.rest)
elif exp.first == 'define': # and expressions

return eval_define(exp.rest)

else: # Call expressions
return calc_apply(calc_eval(exp.first), exp.rest.map(

calc_eval))
elif exp in bindings: # Looking up variables

return bindings[exp]
elif exp in OPERATORS: # Looking up procedures

return OPERATORS[exp]
else: # Numbers

return exp

def eval_define(expr):
"""
>>> calc_eval(Pair("define", Pair("a", Pair(1, nil))))
'a'
>>> calc_eval("a")
1
"""
name, value = expr.first, calc_eval(expr.rest.first)
bindings[name] = value
return name

OPERATORS = {}

Q8: Counting Eval and Apply

How many calls to calc_eval and calc_apply would it take to evaluate each of
the following Calculator expressions?

scm> (+ 1 2)

For this particular prompt please list out the inputs to calc_eval and calc_apply.

4 calls to eval: 1 for the entire expression, and then 1 each for the operator and
each operand.

1 call to apply the addition operator.

Explicity listing out the inputs we have the following for calc_eval: , ‘+’, 1, 2.
calc_apply is given ‘+’ for fn and (1 2) for args.

A note is that (+ 1 2) corresponds to the following Pair, Pair(‘+’, Pair(1, Pair(2,

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.



14 Interpreters, Tail Calls

nil))) and (1 2) corresponds to the Pair, Pair(1, Pair(2, nil)).

scm> (+ 2 4 6 8)

6 calls to eval: 1 for the entire expression, and then 1 each for the operator and
each operand.

1 call to apply the addition operator.

scm> (+ 2 (* 4 (- 6 8)))

10 calls to eval: 1 for the whole expression, then 1 for each of the operators and
operands. When we encounter another call expression, we have to evaluate the
operators and operands inside as well.

3 calls to apply the function to the arguments for each call expression.

scm> (and 1 (+ 1 0) 0)

7 calls to eval: 1 for the whole expression, 1 for the first argument, 1 for (+ 1 0),
1 for the + operator, 2 for the operands to plus, and 1 for the final 0. Notice that
and is a special form so we do not run calc_eval on the and.

1 calls to apply to evaluate the + expression.

Video Walkthrough

Q9: From Pair to Calculator

Write out the Calculator expression with proper syntax that corresponds to the
following Pair constructor calls.

>>> Pair('+', Pair(1, Pair(2, Pair(3, Pair(4, nil)))))

> (+ 1 2 3 4)

>>> Pair('+', Pair(1, Pair(Pair('*', Pair(2, Pair(3, nil))), nil)))

> (+ 1 (* 2 3))

Box and pointers solutions Video walkthrough

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

https://youtu.be/ZHPdJzZ3g14
https://goo.gl/6VKGQX
https://youtu.be/zIvYrA76GRo?t=1m59s

	Tail Recursion
	Tail Call Optimization
	Tail Context

	Tail calls
	Q1: Is Tail Call
	Q2: Sum
	Q3: Reverse


	Calculator
	Q4: Using Pair
	Q5: New Procedure
	Q6: New Form
	Q7: Saving Values
	Q8: Counting Eval and Apply
	Q9: From Pair to Calculator



