
CS 61A String Representation, Trees
Spring 2022 Discussion 6: March 2, 2022 Solutions

##Walkthrough Videos

Feel free to try these problems on the worksheet in discussion or on your own, and
then come back to reference these walkthrough videos as you study.

To see these videos, you should be logged into your berkeley.edu email.

Representation: Repr, Str
There are two main ways to produce the “string” of an object in Python: str()
and repr(). While the two are similar, they are used for different purposes.

str() is used to describe the object to the end user in a “Human-readable” form,
while repr() can be thought of as a “Computer-readable” form mainly used for
debugging and development.

When we define a class in Python, __str__ and __repr__ are both built-in methods
for the class.

We can call those methods using the global built-in functions str(obj) or repr(
obj) instead of dot notation, obj.__repr__() or obj.__str__().

In addition, the print() function calls the __str__ method of the object, while
simply calling the object in interactive mode calls the _repr__ method.

Here’s an example:



2 String Representation, Trees

class Rational:

def __init__(self, numerator, denominator):
self.numerator = numerator
self.denominator = denominator

def __str__(self):
return f'{self.numerator}/{self.denominator}'

def __repr__(self):
return f'Rational({self.numerator},{self.denominator})'

>>> a = Rational(1, 2)
>>> str(a)
'1/2'
>>> repr(a)
'Rational(1,2)'
>>> print(a)
1/2
>>> a
Rational(1,2)

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.



String Representation, Trees 3

Q1: WWPD: Repr-esentation

Note: This is not the typical way repr is used, nor is this way of writ-
ing repr recommended, this problem is mainly just to make sure you
understand how repr and str work.

class A:
def __init__(self, x):

self.x = x

def __repr__(self):
return self.x

def __str__(self):
return self.x * 2

class B:
def __init__(self):

print('boo!')
self.a = []

def add_a(self, a):
self.a.append(a)

def __repr__(self):
print(len(self.a))
ret = ''
for a in self.a:

ret += str(a)
return ret

Given the above class definitions, what will the following lines output?

>>> A('one')

one

>>> print(A('one'))

oneone

>>> repr(A('two'))

‘two’

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.



4 String Representation, Trees

>>> b = B()

boo!

>>> b.add_a(A('a'))
>>> b.add_a(A('b'))
>>> b

2

aabb

Trees
In computer science, trees are recursive data structures that are widely used in
various settings and can be implemented in many ways. The diagram below is an
example of a tree.

Example Tree

Generally in computer science, you may see trees drawn “upside-down” like so. We
say the root is the node where the tree begins to branch out at the top, and the
leaves are the nodes where the tree ends at the bottom.

Some terminology regarding trees:

• Parent Node: A node that has at least one branch.

• Child Node: A node that has a parent. A child node can only have one
parent.

• Root: The top node of the tree. In our example, this is the 1 node.

• Label: The value at a node. In our example, every node’s label is an integer.

• Leaf : A node that has no branches. In our example, the 4, 5, 6, 2 nodes are
leaves.

• Branch: A subtree of the root. Trees have branches, which are trees them-
selves: this is why trees are recursive data structures.

• Depth: How far away a node is from the root. We define this as the number
of edges between the root to the node. As there are no edges between the root
and itself, the root has depth 0. In our example, the 3 node has depth 1 and
the 4 node has depth 2.

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.



String Representation, Trees 5

• Height: The depth of the lowest (furthest from the root) leaf. In our example,
the 4, 5, and 6 nodes are all the lowest leaves with depth 2. Thus, the entire
tree has height 2.

In computer science, there are many different types of trees, used for different
purposes. Some vary in the number of branches each node has; others vary in the
structure of the tree.

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.



6 String Representation, Trees

A tree has a root value and a list of branches, where each branch is itself a tree.

• The Tree constructor takes in a value label for the root, and an optional
list of branches branches. If branches isn’t given, the constructor uses the
empty list [] as the default.

• To get the label of a tree t, we access the instance attributes t.label.
• Accessing the instance attribute t.branches will give us a list of branches.

Treating the return value of t.branches as a list is then part of how we define
trees.

With this in mind, we can create the tree from earlier using our constructor:

t = Tree(1,
[Tree(3,

[Tree(4),
Tree(5),
Tree(6)]),

Tree(2)])

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.



String Representation, Trees 7

Q2: Height

Write a function that returns the height of a tree. Recall that the height of a tree
is the length of the longest path from the root to a leaf.

def height(t):
"""Return the height of a tree.

>>> t = Tree(3, [Tree(5, [Tree(1)]), Tree(2)])
>>> height(t)
2
>>> t = Tree(3, [Tree(1), Tree(2, [Tree(5, [Tree(6)]), Tree(1)])
])
>>> height(t)
3
"""
if t.is_leaf():

return 0
return 1 + max([height(branch) for branch in t.branches])
# alternate solutions
return 1 + max([-1] + [height(branch) for branch in t.branches])
return max([1 + height(b) for b in t.branches], default=0)

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.



8 String Representation, Trees

Q3: Maximum Path Sum

Write a function that takes in a tree and returns the maximum sum of the values
along any path in the tree. Recall that a path is from the tree’s root to any leaf.

def max_path_sum(t):
"""Return the maximum path sum of the tree.

>>> t = Tree(1, [Tree(5, [Tree(1), Tree(3)]), Tree(10)])
>>> max_path_sum(t)
11
"""
if t.is_leaf():
return t.label

else:
return t.label + max([max_path_sum(b) for b in t.branches])

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.



String Representation, Trees 9

Q4: Find Path

Write a function that takes in a tree and a value x and returns a list containing the
nodes along the path required to get from the root of the tree to a node containing
x.

If x is not present in the tree, return None. Assume that the entries of the tree are
unique.

For the following tree, find_path(t, 5) should return [2, 7, 6, 5]

Example Tree

def find_path(t, x):
"""
>>> t = Tree(2, [Tree(7, [Tree(3), Tree(6, [Tree(5), Tree(11)])
]), Tree(15)])
>>> find_path(t, 5)
[2, 7, 6, 5]
>>> find_path(t, 10) # returns None
"""
if t.label == x:

return [t.label]
for b in t.branches:

path = find_path(b, x)
if path:

return [t.label] + path

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.



10 String Representation, Trees

Q5: Prune Small

Complete the function prune_small that takes in a Tree t and a number n and
prunes t mutatively. If t or any of its branches has more than n branches, the n
branches with the smallest labels should be kept and any other branches should be
pruned, or removed, from the tree.

def prune_small(t, n):
"""Prune the tree mutatively, keeping only the n branches
of each node with the smallest label.

>>> t1 = Tree(6)
>>> prune_small(t1, 2)
>>> t1
Tree(6)
>>> t2 = Tree(6, [Tree(3), Tree(4)])
>>> prune_small(t2, 1)
>>> t2
Tree(6, [Tree(3)])
>>> t3 = Tree(6, [Tree(1), Tree(3, [Tree(1), Tree(2), Tree(3)]),
Tree(5, [Tree(3), Tree(4)])])
>>> prune_small(t3, 2)
>>> t3
Tree(6, [Tree(1), Tree(3, [Tree(1), Tree(2)])])
"""
while len(t.branches) > n:

largest = max(t.branches, key=lambda x: x.label)
t.branches.remove(largest)

for b in t.branches:
prune_small(b, n)

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.


	Representation: Repr, Str
	Q1: WWPD: Repr-esentation

	Trees
	Q2: Height
	Q3: Maximum Path Sum
	Q4: Find Path
	Q5: Prune Small



