
CS 61A Recursion
Spring 2022 Discussion 3: February 9, 2022 Solutions

##Walkthrough Videos

Feel free to try these problems on the worksheet in discussion or on your own, and
then come back to reference these walkthrough videos as you study.

To see these videos, you should be logged into your berkeley.edu email.

Recursion
A recursive function is a function that is defined in terms of itself.

Consider this recursive factorial function:

def factorial(n):
"""Return the factorial of N, a positive integer."""
if n == 1:

return 1
else:

return n * factorial(n - 1)

Inside of the body of factorial, we are able to call factorial itself, since the
function body is not evaluated until the function is called.

When n is 1, we can directly return the factorial of 1, which is 1. This is known as
the base case of this recursive function, which is the case where we can return from
the function call directly, without having to first recurse (i.e. call factorial) and
then returning. The base case is what prevents factorial from recursing infinitely.

Since we know that our base case factorial(1) will return, we can compute
factorial(2) in terms of factorial(1), then factorial(3) in terms of
factorial(2), and so on.

There are three main steps in a recursive definition:

1. Base case. You can think of the base case as the case of the simplest function
input, or as the stopping condition for the recursion.

In our example, factorial(1) is our base case for the factorial function.

2. Recursive call on a smaller problem. You can think of this step as calling
the function on a smaller problem that our current problem depends on. We
assume that a recursive call on this smaller problem will give us the expected
result; we call this idea the “recursive leap of faith”.

In our example, factorial(n) depends on the smaller problem of factorial
(n-1).

3. Solve the larger problem. In step 2, we found the result of a smaller
problem. We want to now use that result to figure out what the result of our

2 Recursion

current problem should be, which is what we want to return from our current
function call.

In our example, we can compute factorial(n) by multiplying the result of
our smaller problem factorial(n-1) (which represents (n-1)!) by n (the
reasoning being that n! = n * (n-1)!).

Q1: Warm Up: Recursive Multiplication

These exercises are meant to help refresh your memory of the topics covered in
lecture.

Write a function that takes two numbers m and n and returns their product. Assume
m and n are positive integers. Use recursion, not mul or *.

Hint: 5 * 3 = 5 + (5 * 2) = 5 + 5 + (5 * 1).

For the base case, what is the simplest possible input for multiply?

If one of the inputs is one, you simply return the other input.

For the recursive case, what does calling multiply(m - 1, n) do? What does
calling multiply(m, n - 1) do? Do we prefer one over the other?

The first call will calculate a value that is n less than the total, while the second will
calculate a value that is m less. Either recursive call will work, but only multiply(
m, n - 1) is used in this solution.

def multiply(m, n):
""" Takes two positive integers and returns their product using
recursion.
>>> multiply(5, 3)
15
"""
if n == 1:

return m
else:

return m + multiply(m, n - 1)

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Recursion 3

Q2: Recursion Environment Diagram

Draw an environment diagram for the following code:

Note: If you can’t move elements around, make sure you’re logged in!

See the web version of this resource for the environment diagram.

This function returns the result of computing X to the power of Y.

Note: This problem is meant to help you understand what really goes on
when we make the “recursive leap of faith”. However, when approaching
or debugging recursive functions, you should avoid visualizing them in
this way for large or complicated inputs, since the large number of frames
can be quite unwieldy and confusing. Instead, think in terms of the three
steps: base case, recursive call, and solving the full problem.

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

4 Recursion

Q3: Find the Bug

Find the bug with this recursive function.

def skip_mul(n):
"""Return the product of n * (n - 2) * (n - 4) * ...

>>> skip_mul(5) # 5 * 3 * 1
15
>>> skip_mul(8) # 8 * 6 * 4 * 2
384
"""
if n == 2:

return 2
else:

return n * skip_mul(n - 2)

Consider what happens when we choose an odd number for n. skip_mul(3) will
return 3 * skip_mul(1). skip_mul(1) will return 1 * skip_mul(-1). You may
see the problem now. Since we are decreasing n by two at a time, we’ve completed
missed our base case of n == 2, and we will end up recursing indefinitely. We need
to add another base case to make sure this doesn’t happen.

def skip_mul(n):
if n == 1:

return 1
elif n == 2:

return 2
else:

return n * skip_mul(n - 2)

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Recursion 5

Q4: Recursive Hailstone

Recall the hailstone function from Homework 2. First, pick a positive integer n
as the start. If n is even, divide it by 2. If n is odd, multiply it by 3 and add 1.
Repeat this process until n is 1. Write a recursive version of hailstone that prints
out the values of the sequence and returns the number of steps.

Hint: When taking the recursive leap of faith, consider both the return
value and side effect of this function.

def hailstone(n):
"""Print out the hailstone sequence starting at n, and return
the number of elements in the sequence.
>>> a = hailstone(10)
10
5
16
8
4
2
1
>>> a
7
>>> b = hailstone(1)
1
>>> b
1
"""
print(n)
if n == 1:

return 1
elif n % 2 == 0:

return 1 + hailstone(n // 2)
else:

return 1 + hailstone(3 * n + 1)

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

6 Recursion

Q5: Merge Numbers

Write a procedure merge(n1, n2) which takes numbers with digits in decreasing
order and returns a single number with all of the digits of the two, in decreasing
order. Any number merged with 0 will be that number (treat 0 as having no digits).
Use recursion.

Hint: If you can figure out which number has the smallest digit out of
both, then we know that the resulting number will have that smallest
digit, followed by the merge of the two numbers with the smallest digit
removed.

def merge(n1, n2):
""" Merges two numbers by digit in decreasing order
>>> merge(31, 42)
4321
>>> merge(21, 0)
21
>>> merge (21, 31)
3211
"""
if n1 == 0:

return n2
elif n2 == 0:

return n1
elif n1 % 10 < n2 % 10:

return merge(n1 // 10, n2) * 10 + n1 % 10
else:

return merge(n1, n2 // 10) * 10 + n2 % 10

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Recursion 7

Q6: Is Prime

Write a function is_prime that takes a single argument n and returns True if n
is a prime number and False otherwise. Assume n > 1. We implemented this in
Discussion 1 iteratively, now time to do it recursively!

Hint: You will need a helper function! Remember helper functions
are nested functions that are useful if you need to keep track of more
variables than the given parameters, or if you need to change the value
of the input.

def is_prime(n):
"""Returns True if n is a prime number and False otherwise.

>>> is_prime(2)
True
>>> is_prime(16)
False
>>> is_prime(521)
True
"""
def helper(i):

if i > (n ** 0.5): # Could replace with i == n
return True

elif n % i == 0:
return False

return helper(i + 1)
return helper(2)

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

	Recursion
	Q1: Warm Up: Recursive Multiplication
	Q2: Recursion Environment Diagram
	Q3: Find the Bug
	Q4: Recursive Hailstone
	Q5: Merge Numbers
	Q6: Is Prime

