
CS 61A Control, Environment Diagrams
Spring 2022 Discussion 1: January 26, 2022 Solutions

Control structures
Control structures direct the flow of a program using logical statements. For
example, conditionals (if-elif-else) allow a program to skip sections of code,
and iteration (while), allows a program to repeat a section.

Conditional statements
Conditional statements let programs execute different lines of code depending
on certain conditions. Let’s review the if-elif-else syntax:

• The elif and else clauses are optional, and you can have any number of
elif clauses.

• A conditional expression is an expression that evaluates to either a truthy
value (True, a non-zero integer, etc.) or a falsy value (False, 0, None, "", [],
etc.).

• Only the first if/elif expression that evaluates to a truthy value will have
its corresponding indented suite be executed.

• If none of the conditional expressions evaluate to a true value, then the else
suite is executed. There can only be one else clause in a conditional state-
ment.

Here’s the general form:

if <conditional expression>:
<suite of statements>

elif <conditional expression>:
<suite of statements>

else:
<suite of statements>

Boolean Operators
Python also includes the boolean operators and, or, and not. These operators
are used to combine and manipulate boolean values.

• not returns the opposite boolean value of the following expression, and will
always return either True or False.

• and evaluates expressions in order and stops evaluating (short-circuits) once
it reaches the first falsy value, and then returns it. If all values evaluate to a
truthy value, the last value is returned.

• or evalutes expressions in order and short-circuits at the first truthy value and
returns it. If all values evaluate to a falsy value, the last value is returned.



2 Control, Environment Diagrams

For example:

>>> not None
True
>>> not True
False
>>> -1 and 0 and 1
0
>>> False or 9999 or 1/0
9999

Q1: Case Conundrum

In this question, we will explore the difference between if and elif.

What is the result of evaluating the following code?

def special_case():
x = 10
if x > 0:

x += 2
elif x < 13:

x += 3
elif x % 2 == 1:

x += 4
return x

special_case()

What is the result of evaluating this piece of code?

def just_in_case():
x = 10
if x > 0:

x += 2
if x < 13:

x += 3
if x % 2 == 1:

x += 4
return x

just_in_case()

How about this piece of code?

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.



Control, Environment Diagrams 3

def case_in_point():
x = 10
if x > 0:

return x + 2
if x < 13:

return x + 3
if x % 2 == 1:

return x + 4
return x

case_in_point()

Which of these code snippets result in the same output, and why? Based on your
findings, when do you think using a series of if statements has the same effect as
using both if and elif cases?

The calls to special_case and case_in_point both return 12, while the call to
just_in_case returns 19. Since the number 10 satisfies all three conditions in each
function, the value of the variable x is incremented three times when just_in_case
is called. A series of if statements has the same effect as using both if and elif
cases if each if clause ends in a return statement.

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.



4 Control, Environment Diagrams

Q2: Jacket Weather?

Alfonso will only wear a jacket outside if it is below 60 degrees or it is raining.

Write a function that takes in the current temperature and a boolean value telling
if it is raining. This function should return True if Alfonso will wear a jacket and
False otherwise.

Try solving this problem using an if statement.

Note: Since we’ll either return True or False based on a single condi-
tion, whose truthiness value will also be either True or False. Knowing
this, try to write this function using a single line.

def wears_jacket_with_if(temp, raining):
"""
>>> wears_jacket_with_if(90, False)
False
>>> wears_jacket_with_if(40, False)
True
>>> wears_jacket_with_if(100, True)
True
"""
if temp < 60 or raining:

return True
else:

return False

Q3: If Function vs Statement

Now that we’ve learned about how if statements work, let’s see if we can write a
function that behaves the same as an if statement.

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.



Control, Environment Diagrams 5

def if_function(condition, true_result, false_result):
"""Return true_result if condition is a true value, and
false_result otherwise.

>>> if_function(True, 2, 3)
2
>>> if_function(False, 2, 3)
3
>>> if_function(3==2, 'equal', 'not equal')
'not equal'
>>> if_function(3>2, 'bigger', 'smaller')
'bigger'
"""
if condition:

return true_result
else:

return false_result

Despite the doctests above, this function actually does not always do the same thing
as an if statement.

We want to find a case where this if_function will behave differently from an if
statement. To do so, implement the following functions,

• cond: Calling cond should act as the if condition.
• true_func: Calling true_func should represent the result of the truthy case.
• false_func: Calling false_func should represent the result of the falsey

case.

so that with_if_function does not behave the same as with_if_statement, writ-
ten in the doctests and here below:

• When with_if_statement is called, we print out 61A.
• When with_if_function is called, we print out both Welcome to and 61A

on separate lines.

Implement cond, true_func, and false_func below.

Hint: If you are having a hard time identifying how with_if_statement
and with_if_function would differ in behavior, consider the rules of

evaluation for if statements and call expressions.

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

http://composingprograms.com/pages/15-control.html#conditional-statements
http://composingprograms.com/pages/15-control.html#conditional-statements
http://composingprograms.com/pages/12-elements-of-programming.html#call-expressions


6 Control, Environment Diagrams

def if_function(condition, true_result, false_result):
"""Return true_result if condition is a true value, and
false_result otherwise.

>>> if_function(True, 2, 3)
2
>>> if_function(False, 2, 3)
3
>>> if_function(3==2, 'equal', 'not equal')
'not equal'
>>> if_function(3>2, 'bigger', 'smaller')
'bigger'
"""
if condition:

return true_result
else:

return false_result

def with_if_statement():
"""
>>> result = with_if_statement()
61A
>>> print(result)
None
"""
if cond():

return true_func()
else:

return false_func()

def with_if_function():
"""
>>> result = with_if_function()
Welcome to
61A
>>> print(result)
None
"""
return if_function(cond(), true_func(), false_func())

def cond():
return False

def true_func():
print("Welcome to")

def false_func():
print("61A")

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.



Control, Environment Diagrams 7

The function with_if_function uses a call expression, which guarantees that all
of its operand subexpressions will be evaluated before if_function is applied to
the resulting arguments.

Therefore, even if cond returns False, the function true_func will be called. When
we call true_func, we print out Welcome to. Then, when we call false_func, we
will also print 61A.

By contrast, with_if_statement will never call true_func if cond returns False.
Thus, we will only call false_func, printing 61A.

While loops
To repeat the same statements multiple times in a program, we can use iteration.
In Python, one way we can do this is with a while loop.

while <conditional clause>:
<statements body>

As long as <conditional clause> evaluates to a true value, <statements body>
will continue to be executed. The conditional clause gets evaluated each time the
body finishes executing.

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.



8 Control, Environment Diagrams

Q4: Square So Slow

What is the result of evaluating the following code?

def square(x):
print("here!")
return x * x

def so_slow(num):
x = num
while x > 0:

x = x + 1
return x / 0

square(so_slow(5))

Hint: What happens to x over time?

Solution: This program results in an infinite loop because x will always be greater
than 0; x / 0 is never executed. We also know that here! is never printed since the
operand so_slow(5) must be evaluated before function square(x) can be called.

Here’s a video walkthrough.

Q5: Is Prime?

Write a function that returns True if a positive integer n is a prime number and
False otherwise.

A prime number n is a number that is not divisible by any numbers other than 1
and n itself. For example, 13 is prime, since it is only divisible by 1 and 13, but 14
is not, since it is divisible by 1, 2, 7, and 14.

Hint: Use the % operator: x % y returns the remainder of x when
divided by y.

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

https://www.youtube.com/watch?v=Fiw0f5yuQgo&vq=hd1080&t=39m34s


Control, Environment Diagrams 9

def is_prime(n):
"""
>>> is_prime(10)
False
>>> is_prime(7)
True
"""
if n == 1:

return False
k = 2
while k < n:

if n % k == 0:
return False

k += 1
return True

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.



10 Control, Environment Diagrams

Q6: Fizzbuzz

Implement the fizzbuzz sequence, which prints out a single statement for each num-
ber from 1 to n. For a number i,

• If i is divisible by 3 only, then we print “fizz”.
• If i is divisible by 5 only, then we print “buzz”.
• If i is divisible by both 3 and 5, then we print “fizzbuzz”.
• Otherwise, we print the number i by itself.

Implement fizzbuzz(n) here:

def fizzbuzz(n):
"""
>>> result = fizzbuzz(16)
1
2
fizz
4
buzz
fizz
7
8
fizz
buzz
11
fizz
13
14
fizzbuzz
16
>>> result is None # No return value
True
"""
i = 1
while i <= n:

if i % 3 == 0 and i % 5 == 0:
print('fizzbuzz')

elif i % 3 == 0:
print('fizz')

elif i % 5 == 0:
print('buzz')

else:
print(i)

i += 1

To print something for each number from 1 to n, we can use a loop that goes
through each number, and then check which of the cases applies using if-elif-

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.



Control, Environment Diagrams 11

else to figure out what to print.

Students should be careful about the order in which they have their if-elif state-
ments: we want to first check if i is divisible by both 3 and 5, or otherwise we will
end up printing “fizz” if the student checked for divisibility by 3 first (or “buzz” if
the student checked for divisibility by 5 first) rather than “fizzbuzz”.

Video walkthrough

Environment Diagrams
An environment diagram is a model we use to keep track of all the variables
that have been defined and the values they are bound to. We will be using this tool
throughout the course to understand complex programs involving several different
assignments and function calls.

One key idea in environment diagrams is the frame. A frame helps us keep track of
what variables have been defined in the current execution environment, and what
values they hold. The frame we start off with when executing a program from
scratch is what we call the Global frame. Later, we’ll get into how new frames
are created and how they may depend on their parent frame.

Here’s a short program and its corresponding diagram:

See the web version of this resource for the environment diagram.

Remember that programs are mainly just a set of statements or instructions— so
drawing diagrams that represent these programs also involves following sets of in-
structions! Let’s dive in…

Assignment Statements
Assignment statements, such as x = 3, define variables in programs. To execute
one in an environment diagram, record the variable name and the value:

1. Evaluate the expression on the right side of the = sign.
2. Write the variable name and the expression’s value in the current frame.

Q7: Assignment Diagram

Use these rules to draw an environment diagram for the assignment statements
below:

See the web version of this resource for the environment diagram.

We first assign x to the result of evaluating 11 % 4. We then bind y to the current
value of x (which we can figure out by looking it up in our current environment
diagram). Finally, we’d like to update x to the new value that is the result of the
current x squared.

Video walkthrough

def Statements
A def statement creates (“defines”) a function object and binds it to a name. To
diagram def statements, record the function name and bind the function object to

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

https://youtu.be/-Y2JdHG1aK8
https://www.youtube.com/watch?v=m-m8Yp1uwlg


12 Control, Environment Diagrams

the name. It’s also important to write the parent frame of the function, which is
where the function is defined.

A very important note: Assignments for def statements use pointers to func-
tions, which can have different behavior than primitive assignments (such as vari-
ables bound to numbers).

1. Draw the function object to the right-hand-side of the frames, denoting the
intrinsic name of the function, its parameters, and the parent frame (e.g. func
square(x) [parent = Global].

2. Write the function name in the current frame and draw an arrow from the
name to the function object.

Q8: def Diagram

Use these rules for defining functions and the rules for assignment statements to
draw a diagram for the code below.

See the web version of this resource for the environment diagram.

We first define the two functions double and triple, each bound to their corre-
sponding name. In the next line, we assign the name hat to the function object
that double refers to. Finally, we assign the name double to the function object
that triple refers to.

Video walkthrough

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

https://youtu.be/EuygSqH8nTk

	Control structures
	Conditional statements
	Boolean Operators
	Q1: Case Conundrum
	Q2: Jacket Weather?
	Q3: If Function vs Statement

	While loops
	Q4: Square So Slow
	Q5: Is Prime?
	Q6: Fizzbuzz

	Environment Diagrams
	Assignment Statements
	Q7: Assignment Diagram

	def Statements
	Q8: def Diagram



