
CS 61A Programs as Data
Spring 2022 Discussion 12: April 13, 2022

Scheme Programs as Data
All Scheme programs are made up of expressions. There are two types of expressions:
primitive expressions and combinations.

• Primitive expression examples: #f, 1.7, +
• Combinations examples: (fact 10), (/ 8 3), (not #f)

Scheme’s built-in list data structure can be used to represent combinations.

• Example: (list 'fact 10) results in the combination (fact 10).

Quasiquotation
The normal quote ' and the quasiquote ` are both valid ways to quote an expres-
sion. However, the quasiquoted expression can be unquoted with the “unquote” ,
(represented by a comma). When a term in a quasiquoted expression is unquoted,
the unquoted term is evaluated.

scm> (define a 5)
a
scm> (define b 3)
b
scm> `(* a b)
(* a b)
scm> `(* a ,b)
(* a 3)
scm> '(* a ,b)
(* a (unquote b))

2 Programs as Data

Q1: WWSD? Quasiquotation

scm> '(1 x 3)

scm> (define x 2)

scm> `(1 x 3)

scm> `(1 ,x 3)

scm> '(1 ,x 3)

scm> `(,1 x 3)

scm> `,(+ 1 x 3)

scm> `(1 (,x) 3)

scm> `(1 ,(+ x 2) 3)

scm> (define y 3)

scm> `(x ,(* y x) y)

scm> `(1 ,(cons x (list y 4)) 5)

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Programs as Data 3

Eval Procedure
The eval procedure forces evaluation of a given expression in the current envi-
ronment. Since a quote supresses evaluation, calling eval on a quoted expression
(quote expr) will evaluate the expression expr.

scm> (define a '(1 2 3))
a
scm> (quote a) ; equivalently, 'a
a
scm> (eval 'a)
(1 2 3)

Apply Procedure
When evaluating an expression, once the operator and operands have been fully
evaluated, the operator is apply’d using the operands as arguments. This can also
be done outside of the implicit context of evaluations using the apply procedure.
The apply procedure applies a given operator to a list of operands.

scm> (apply + '(2 3))
5
scm> (apply (lambda (x) (* 2 x)) (list 1))
2

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

4 Programs as Data

Q2: WWSD? Eval and Apply

scm> (define add-numbers '(+ 1 2))

scm> add-numbers

scm> (eval add-numbers)

scm> (apply + '(1 2)) ; Is this similar to the previous eval call?

scm> (define expr '(lambda (a b) (+ a b)))

scm> expr

scm> (define adder-func (eval expr))

scm> (apply adder-func '(1 2))

scm> (define make-list (cons 'list '(1 2 3)))

scm> make-list

scm> (eval make-list)

scm> (apply list '(1 2 3)) ; Is this similar to the previous eval
call?

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Programs as Data 5

Q3: Geometric Sequence

Implement the procedure geom, which takes in a nonnegative integer n and a factor
f that is an integer greater than 0. The procedure should create a program as
a list that, when passed into the eval procedure, evaluates to the nth number of
the geometric sequence that starts at 1 and has a factor of f. The sequence is
zero-indexed.

For example, the geometric sequence starting at 2 is 1, 2, 4, 8, and so on. The
expression (geom 5 2) returns a program as a list. When eval is called on that
returned list, it should evaluate to the 5th number of the geometric sequence that
has a factor of 2 (and starts at 1), which is 32.

(define (geom n f)
'YOUR-CODE-HERE

(define expr (geom 1 5))
(expect expr (* 1 5))
(expect (eval expr) 5)

(define expr2 (geom 2 5))
(expect expr2 (* (* 1 5) 5))
(expect (eval expr2) 25)

You can use more space on the back if you want

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

6 Programs as Data

Q4: Make Or

Implement make-or, which returns, as a list, a program that takes in two expres-
sions and or’s them together (applying short-circuiting rules). However, do this
without using the or special form. You may also assume the name v1 doesn’t ap-
pear anywhere outside this function. For a quick reminder on the short-circuiting
rules for or take a look at slide 18 of Lecture 3 on Control.

The behavior of the or procedure is specified by the following doctests:

scm> (define or-program (make-or '(print 'bork) '(/ 1 0)))
or-program
scm> (eval or-program)
bork
scm> (eval (make-or '(= 1 0) '(+ 1 2)))
3

(define (make-or expr1 expr2)
`(let ((v1 ____________))

(if _____ _____ _____))
)

Q5: Make “Make Or”

The above code generates a program that evaluates an or expression without using
any or statements. However, we can take it even one step further: let’s create a
program which generates make-or, the program you created which generates an or
expression.

Implement make-make-or, a program which generates a program which, when eval
’d, can be apply’d to make an or expression with differing varibles. You may find
the code you wrote above to be useful.

Hint: recall that you want to construct a list that resembles the program.
Do you know what this list would look like?

(define (make-make-or)
'YOUR-CODE-HERE

)

You can use more space on the back if you want

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Programs as Data 7

Now, given this function, determine the outputs from the following expressions:

scm> (make-make-or)

scm> (eval (make-make-or))

scm> (eval (eval (make-make-or)))

scm> (apply (eval (eval (make-make-or))) '(#t (/ 1 0)))

scm> (eval (apply (eval (eval (make-make-or))) '(#t (/ 1 0))))

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

	Scheme Programs as Data
	Quasiquotation
	Q1: WWSD? Quasiquotation

	Eval Procedure
	Apply Procedure
	Q2: WWSD? Eval and Apply
	Q3: Geometric Sequence
	Q4: Make Or
	Q5: Make ``Make Or''

