
CS 61A Linked Lists, Iterators, Generators
Spring 2022 Discussion 7: March 9, 2022

Linked Lists
There are many different implementations of sequences in Python. Today, we’ll
explore the linked list implementation.

A linked list is either an empty linked list, or a Link object containing a first value
and the rest of the linked list.

To check if a linked list is an empty linked list, compare it against the class attribute
Link.empty:

if link is Link.empty:
print('This linked list is empty!')

else:
print('This linked list is not empty!')

You can find an implementation of the Link class below:

class Link:
"""A linked list."""
empty = ()

def __init__(self, first, rest=empty):
assert rest is Link.empty or isinstance(rest, Link)
self.first = first
self.rest = rest

def __repr__(self):
if self.rest:

rest_repr = ', ' + repr(self.rest)
else:

rest_repr = ''
return 'Link(' + repr(self.first) + rest_repr + ')'

def __str__(self):
string = '<'
while self.rest is not Link.empty:

string += str(self.first) + ' '
self = self.rest

return string + str(self.first) + '>'

2 Linked Lists, Iterators, Generators

Q1: WWPD: Linked Lists

What would Python display?

Note: If you get stuck, try drawing out the box-and-pointer diagram for
the linked list or running examples in 61A Code.

>>> link = Link(1, Link(2, Link(3)))
>>> link.first

>>> link.rest.first

>>> link.rest.rest.rest is Link.empty

>>> link.rest = link.rest.rest
>>> link.rest.first

>>> link = Link(1)
>>> link.rest = link
>>> link.rest.rest.rest.rest.first

>>> link = Link(2, Link(3, Link(4)))
>>> link2 = Link(1, link)
>>> link2.first

>>> link2.rest.first

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Linked Lists, Iterators, Generators 3

Q2: Remove All

Implement a function remove_all that takes a Link, and a value, and remove any
linked list node containing that value. You can assume the list already has at least
one node containing value and the first element is never removed. Notice that you
are not returning anything, so you should mutate the list.

Note: Can you create a recursive and iterative solution for remove_all?

def remove_all(link, value):
"""Remove all the nodes containing value in link. Assume that
the
first element is never removed.

>>> l1 = Link(0, Link(2, Link(2, Link(3, Link(1, Link(2, Link(3)
))))))
>>> print(l1)
<0 2 2 3 1 2 3>
>>> remove_all(l1, 2)
>>> print(l1)
<0 3 1 3>
>>> remove_all(l1, 3)
>>> print(l1)
<0 1>
>>> remove_all(l1, 3)
>>> print(l1)
<0 1>
"""
"*** YOUR CODE HERE ***"

You can use more space on the back if you want

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

4 Linked Lists, Iterators, Generators

Iterators
An iterable is an object where we can go through its elements one at a time. Specif-
ically, we define an iterable as any object where calling the built-in iter function
on it returns an iterator. An iterator is another type of object which can iterate
over an iterable by keeping track of which element is next in the iterable.

For example, a sequence of numbers is an iterable, since iter gives us an iterator
over the given sequence:

>>> lst = [1, 2, 3]
>>> lst_iter = iter(lst)
>>> lst_iter
<list_iterator object ...>

With an iterator, we can call next on it to get the next element in the iterator.
If calling next on an iterator raises a StopIteration exception, this signals to us
that the iterator has no more elements to go through. This will be explored in the
example below.

Calling iter on an iterable multiple times returns a new iterator each time with
distinct states (otherwise, you’d never be able to iterate through a iterable more
than once). You can also call iter on the iterator itself, which will just return the
same iterator without changing its state. However, note that you cannot call next
directly on an iterable.

For example, we can see what happens when we use iter and next with a list:

>>> lst = [1, 2, 3]
>>> next(lst) # Calling next on an iterable
TypeError: 'list' object is not an iterator
>>> list_iter = iter(lst) # Creates an iterator for the list
>>> next(list_iter) # Calling next on an iterator
1
>>> next(iter(list_iter)) # Calling iter on an iterator returns

itself
2
>>> for e in list_iter: # Exhausts remainder of list_iter
... print(e)
3
>>> next(list_iter) # No elements left!
StopIteration
>>> lst # Original iterable is unaffected
[1, 2, 3]

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Linked Lists, Iterators, Generators 5

Q3: WWPD: Iterators

What would Python display?

>>> s = [[1, 2, 3, 4]]
>>> i = iter(s)
>>> j = iter(next(i))
>>> next(j)

>>> s.append(5)
>>> next(i)

>>> next(j)

>>> list(j)

>>> next(i)

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

6 Linked Lists, Iterators, Generators

Generators
We can define custom iterators by writing a generator function, which returns a
special type of iterator called a generator.

A generator function has at least one yield statement and returns a generator
object when we call it, without evaluating the body of the generator function itself.

When we first call next on the returned generator, then we will begin evaluating the
body of the generator function until an element is yielded or the function otherwise
stops (such as if we return). The generator remembers where we stopped, and will
continue evaluating from that stopping point on the next time we call next.

As with other iterators, if there are no more elements to be generated, then calling
next on the generator will give us a StopIteration.

For example, here’s a generator function:

def countdown(n):
print("Beginning countdown!")
while n >= 0:

yield n
n -= 1

print("Blastoff!")

To create a new generator object, we can call the generator function. Each returned
generator object from a function call will separately keep track of where it is in terms
of evaluating the body of the function. Notice that calling iter on a generator object
doesn’t create a new bookmark, but simply returns the existing generator object!

>>> c1, c2 = countdown(2), countdown(2)
>>> c1 is iter(c1) # a generator is an iterator
True
>>> c1 is c2
False
>>> next(c1)
Beginning countdown!
2
>>> next(c2)
Beginning countdown!
2

In a generator function, we can also have a yield from statement, which will yield
each element from an iterator or iterable.

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Linked Lists, Iterators, Generators 7

>>> def gen_list(lst):
... yield from lst
...
>>> g = gen_list([1, 2])
>>> next(g)
1
>>> next(g)
2
>>> next(g)
StopIteration

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

8 Linked Lists, Iterators, Generators

Q4: Filter-Iter

Implement a generator function called filter_iter(iterable, f) that only yields
elements of iterable for which f returns True.

def filter_iter(iterable, f):
"""
>>> is_even = lambda x: x % 2 == 0
>>> list(filter_iter(range(5), is_even)) # a list of the values
yielded from the call to filter_iter
[0, 2, 4]
>>> all_odd = (2*y-1 for y in range(5))
>>> list(filter_iter(all_odd, is_even))
[]
>>> naturals = (n for n in range(1, 100))
>>> s = filter_iter(naturals, is_even)
>>> next(s)
2
>>> next(s)
4
"""
"*** YOUR CODE HERE ***"

You can use more space on the back if you want

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Linked Lists, Iterators, Generators 9

Q5: Infinite Hailstone

Write a generator function that outputs the hailstone sequence starting at number
n. After reaching the end of the hailstone sequence, the generator should yield the
value 1 infinitely.

Here’s a quick reminder of how the hailstone sequence is defined:

1. Pick a positive integer n as the start.
2. If n is even, divide it by 2.
3. If n is odd, multiply it by 3 and add 1.
4. Continue this process until n is 1.

Write this generator function recursively. If you’re stuck, you can first try writing it
iteratively and then seeing how you can turn that implementation into a recursive
one.

Hint: Since hailstone returns a generator, you can yield from a call to
hailstone!

def hailstone(n):
"""Yields the elements of the hailstone sequence starting at n.

At the end of the sequence, yield 1 infinitely.

>>> hail_gen = hailstone(10)
>>> [next(hail_gen) for _ in range(10)]
[10, 5, 16, 8, 4, 2, 1, 1, 1, 1]
>>> next(hail_gen)
1
"""
"*** YOUR CODE HERE ***"

You can use more space on the back if you want

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

10 Linked Lists, Iterators, Generators

Q6: Primes Generator

Write a function primes_gen that takes a single argument n and yields all prime
numbers less than or equal to n in decreasing order. Assume n >= 1. You may use
the is_prime function included below, which we implemented in Discussion 3.

Optional Challenge: Now rewrite the generator so that it also prints the primes in
ascending order.

def is_prime(n):
"""Returns True if n is a prime number and False otherwise.
>>> is_prime(2)
True
>>> is_prime(16)
False
>>> is_prime(521)
True
"""
def helper(i):

if i > (n ** 0.5): # Could replace with i == n
return True

elif n % i == 0:
return False

return helper(i + 1)
return helper(2)

def primes_gen(n):
"""Generates primes in decreasing order.
>>> pg = primes_gen(7)
>>> list(pg)
[7, 5, 3, 2]
"""
if __________________________________:

return
if __________________________________:

yield __________________________________
yield from __________________________________

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

	Linked Lists
	Q1: WWPD: Linked Lists
	Q2: Remove All

	Iterators
	Q3: WWPD: Iterators

	Generators
	Q4: Filter-Iter
	Q5: Infinite Hailstone
	Q6: Primes Generator

