
CS 61A Sequences, Mutability, Object-Oriented
Programming
Spring 2022 Discussion 5: February 23, 2022

Sequences
Sequences are ordered collections of values that support element-selection and have
length. We’ve worked with lists, but other Python types are also sequences, includ-
ing strings.

Q1: Map, Filter, Reduce

Many languages provide map, filter, reduce functions for sequences. Python also
provides these functions (and we’ll formally introduce them later on in the course),
but to help you better understand how they work, you’ll be implementing these
functions in the following problems.

In Python, the map and filter built-ins have slightly different behavior
than the my_map and my_filter functions we are defining here.

my_map takes in a one argument function fn and a sequence seq and returns a list
containing fn applied to each element in seq.

def my_map(fn, seq):
"""Applies fn onto each element in seq and returns a list.
>>> my_map(lambda x: x*x, [1, 2, 3])
[1, 4, 9]
"""
"*** YOUR CODE HERE ***"

You can use more space on the back if you want

my_filter takes in a predicate function pred and a sequence seq and returns a list
containing all elements in seq for which pred returns True.

2 Sequences, Mutability, Object-Oriented Programming

def my_filter(pred, seq):
"""Keeps elements in seq only if they satisfy pred.
>>> my_filter(lambda x: x % 2 == 0, [1, 2, 3, 4]) # new list
has only even-valued elements
[2, 4]
"""
"*** YOUR CODE HERE ***"

You can use more space on the back if you want

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Sequences, Mutability, Object-Oriented Programming 3

my_reduce takes in a two argument function combiner and a non-empty sequence
seq and combines the elements in seq into one value using combiner.

def my_reduce(combiner, seq):
"""Combines elements in seq using combiner.
seq will have at least one element.
>>> my_reduce(lambda x, y: x + y, [1, 2, 3, 4]) # 1 + 2 + 3 + 4
10
>>> my_reduce(lambda x, y: x * y, [1, 2, 3, 4]) # 1 * 2 * 3 * 4
24
>>> my_reduce(lambda x, y: x * y, [4])
4
>>> my_reduce(lambda x, y: x + 2 * y, [1, 2, 3]) # (1 + 2 * 2) +
2 * 3
11
"""
"*** YOUR CODE HERE ***"

You can use more space on the back if you want

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

4 Sequences, Mutability, Object-Oriented Programming

Mutability
Some objects in Python, such as lists and dictionaries, are mutable, meaning that
their contents or state can be changed. Other objects, such as numeric types,
tuples, and strings, are immutable, meaning they cannot be changed once they
are created.

Let’s imagine you order a mushroom and cheese pizza from La Val’s, and they
represent your order as a list:

>>> pizza = ['cheese', 'mushrooms']

With list mutation, they can update your order by mutate pizza directly rather
than having to create a new list:

>>> pizza.append('onions')
>>> pizza
['cheese', 'mushrooms', 'onions']

Aside from append, there are various other list mutation methods:

• append(el): Add el to the end of the list. Return None.
• extend(lst): Extend the list by concatenating it with lst. Return None.
• insert(i, el): Insert el at index i. This does not replace any existing

elements, but only adds the new element el. Return None.
• remove(el): Remove the first occurrence of el in list. Errors if el is not in

the list. Return None otherwise.
• pop(i): Remove and return the element at index i.

We can also use list indexing with an assignment statement to change an existing
element in a list. For example:

>>> pizza[1] = 'tomatoes'
>>> pizza
['cheese', 'tomatoes', 'onions']

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Sequences, Mutability, Object-Oriented Programming 5

Q2: WWPD: Mutability

What would Python display? In addition to giving the output, draw the box and
pointer diagrams for each list to the right.

>>> s1 = [1, 2, 3]
>>> s2 = s1
>>> s1 is s2

>>> s2.extend([5, 6])
>>> s1[4]

>>> s1.append([-1, 0, 1])
>>> s2[5]

>>> s3 = s2[:]
>>> s3.insert(3, s2.pop(3))
>>> len(s1)

>>> s1[4] is s3[6]

>>> s3[s2[4][1]]

>>> s1[:3] is s2[:3]

>>> s1[:3] == s2[:3]

>>> s1[4].append(2)
>>> s3[6][3]

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

6 Sequences, Mutability, Object-Oriented Programming

OOP
Object-oriented programming (OOP) is a programming paradigm that allows
us to treat data as objects, like we do in real life.

For example, consider the class Student. Each of you as individuals is an instance
of this class.

Details that all CS 61A students have, such as name, are called instance variables.
Every student has these variables, but their values differ from student to student. A
variable that is shared among all instances of Student is known as a class variable.
For example, the max_slip_days attribute is a class variable as it is a property of
all students.

All students are able to do homework, attend lecture, and go to office hours. When
functions belong to a specific object, they are called methods. In this case, these
actions would be methods of Student objects.

Here is a recap of what we discussed above:

• class: a template for creating objects

• instance: a single object created from a class

• instance variable: a data attribute of an object, specific to an instance

• class variable: a data attribute of an object, shared by all instances of a
class

• method: a bound function that may be called on all instances of a class

Instance variables, class variables, and methods are all considered attributes of an
object.

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Sequences, Mutability, Object-Oriented Programming 7

Q3: WWPD: Student OOP

Below we have defined the classes Professor and Student, implementing some
of what was described above. Remember that Python passes the self argument
implicitly to methods when calling the method directly on an object.

class Student:

max_slip_days = 3 # this is a class variable

def __init__(self, name, staff):
self.name = name # this is an instance variable
self.understanding = 0
staff.add_student(self)
print("Added", self.name)

def visit_office_hours(self, staff):
staff.assist(self)
print("Thanks, " + staff.name)

class Professor:

def __init__(self, name):
self.name = name
self.students = {}

def add_student(self, student):
self.students[student.name] = student

def assist(self, student):
student.understanding += 1

def grant_more_slip_days(self, student, days):
student.max_slip_days = days

What will the following lines output?

>>> callahan = Professor("Callahan")
>>> elle = Student("Elle", callahan)

>>> elle.visit_office_hours(callahan)

>>> elle.visit_office_hours(Professor("Paulette"))

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

8 Sequences, Mutability, Object-Oriented Programming

>>> elle.understanding

>>> [name for name in callahan.students]

>>> x = Student("Vivian", Professor("Stromwell")).name

>>> x

>>> [name for name in callahan.students]

>>> elle.max_slip_days

>>> callahan.grant_more_slip_days(elle, 7)
>>> elle.max_slip_days

>>> Student.max_slip_days

Q4: Keyboard

We’d like to create a Keyboard class that takes in an arbitrary number of Buttons
and stores these Buttons in a dictionary. The keys in the dictionary will be ints
that represent the postition on the Keyboard, and the values will be the respective
Button. Fill out the methods in the Keyboard class according to each description,
using the doctests as a reference for the behavior of a Keyboard.

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Sequences, Mutability, Object-Oriented Programming 9

class Button:
def __init__(self, pos, key):

self.pos = pos
self.key = key
self.times_pressed = 0

class Keyboard:
"""A Keyboard takes in an arbitrary amount of buttons, and has a
dictionary of positions as keys, and values as Buttons.
>>> b1 = Button(0, "H")
>>> b2 = Button(1, "I")
>>> k = Keyboard(b1, b2)
>>> k.buttons[0].key
'H'
>>> k.press(1)
'I'
>>> k.press(2) # No button at this position
''
>>> k.typing([0, 1])
'HI'
>>> k.typing([1, 0])
'IH'
>>> b1.times_pressed
2
>>> b2.times_pressed
3
"""
def __init__(self, *args):

for _________ in ________________:

def press(self, info):
"""Takes in a position of the button pressed, and
returns that button's output."""
if ____________________:

def typing(self, typing_input):
"""Takes in a list of positions of buttons pressed, and
returns the total output."""

for ________ in ____________________:

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

	Sequences
	Q1: Map, Filter, Reduce

	Mutability
	Q2: WWPD: Mutability

	OOP
	Q3: WWPD: Student OOP
	Q4: Keyboard

