
CS 61A Environment Diagrams, Higher-Order
Functions
Spring 2022 Discussion 2: February 2, 2022

Note on web discussions: In order to use the environment diagrams
on the site, please log in using the account you use for Okpy.

Call Expressions
Call expressions, such as square(2), apply functions to arguments. When exe-
cuting call expressions, we create a new frame in our diagram to keep track of local
variables:

1. Evaluate the operator, which should evaluate to a function.
2. Evaluate the operands from left to right.
3. Draw a new frame, labelling it with the following:

• A unique index (f1, f2, f3, …).
• The intrinsic name of the function, which is the name of the function

object itself. For example, if the function object is func square(x) [
parent=Global], the intrinsic name is square.

• The parent frame ([parent=Global]).
4. Bind the formal parameters to the argument values obtained in step 2 (

e.g. bind x to 3).
5. Evaluate the body of the function in this new frame until a return value is

obtained. Write down the return value in the frame.

If a function does not have a return value, it implicitly returns None. In that case,
the “Return value” box should contain None.

Note: Since we do not know how built-in functions like min(...) or imported
functions like add(...) are implemented, we do not draw a new frame when we
call them, since we would not be able to fill it out accurately.

Q1: Call Diagram

Let’s put it all together! Draw an environment diagram for the following code. You
may not have to use all of the blanks provided to you.

def double(x):
return x * 2

hmmm = double
wow = double(3)
hmmm(wow)

2 Environment Diagrams, Higher-Order Functions

Q2: Nested Calls Diagrams

Draw the environment diagram that results from executing the code below. You
may not need to use all of the frames and blanks provided to you.

def f(x):
return x

def g(x, y):
if x(y):

return not y
return y

x = 3
x = g(f, x)
f = g(f, 0)

Lambda Expressions
A lambda expression evaluates to a function, called a lambda function. For example,
lambda y: x + y is a lambda expression, and can be read as “a function that takes
in one parameter y and returns x + y.”

A lambda expression by itself evaluates to a function but does not bind it to a
name. Also note that the return expression of this function is not evaluated until
the lambda is called. This is similar to how defining a new function using a def
statement does not execute the function’s body until it is later called.

>>> what = lambda x : x + 5
>>> what
<function <lambda> at 0xf3f490>

Unlike def statements, lambda expressions can be used as an operator or an operand
to a call expression. This is because they are simply one-line expressions that
evaluate to functions. In the example below, (lambda y: y + 5) is the operator
and 4 is the operand.

>>> (lambda y: y + 5)(4)
9
>>> (lambda f, x: f(x))(lambda y: y + 1, 10)
11

Q3: Lambda the Environment Diagram

Draw the environment diagram for the following code and predict what Python will
output.

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Environment Diagrams, Higher-Order Functions 3

a = lambda x: x * 2 + 1
def b(b, x):

return b(x + a(x))
x = 3
x = b(a, x)

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

4 Environment Diagrams, Higher-Order Functions

Higher Order Functions
A higher order function (HOF) is a function that manipulates other functions by
taking in functions as arguments, returning a function, or both. For example, the
function compose below takes in two functions as arguments and returns a function
that is the composition of the two arguments.

def composer(func1, func2):
"""Return a function f, such that f(x) = func1(func2(x))."""
def f(x):

return func1(func2(x))
return f

HOFs are powerful abstraction tools that allow us to express certain general patterns
as named concepts in our programs.

HOFs in Environment Diagrams
An environment diagram keeps track of all the variables that have been defined
and the values they are bound to. However, values are not necessarily only integers
and strings. Environment diagrams can model more complex programs that utilize
higher order functions.

See the web version of this resource for the environment diagram.

Lambdas are represented similarly to functions in environment diagrams, but since
they lack instrinsic names, the lambda symbol (�) is used instead.

The parent of any function (including lambdas) is always the frame in which the
function is defined. It is useful to include the parent in environment diagrams in
order to find variables that are not defined in the current frame. In the previous
example, when we call add_two (which is really the lambda function), we need to
know what x is in order to compute x + y. Since x is not in the frame f2, we look
at the frame’s parent, which is f1. There, we find x is bound to 2.

As illustrated above, higher order functions that return a function have their return
value represented with a pointer to the function object.

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Environment Diagrams, Higher-Order Functions 5

Q4: Make Adder

Draw the environment diagram for the following code:

n = 9
def make_adder(n):

return lambda k: k + n
add_ten = make_adder(n+1)
result = add_ten(n)

There are 3 frames total (including the Global frame). In addition, consider the
following questions:

1. In the Global frame, the name add_ten points to a function object. What is
the intrinsic name of that function object, and what frame is its parent?

2. What name is frame f2 labeled with (add_ten or �)? Which frame is the
parent of f2?

3. What value is the variable result bound to in the Global frame?

Q5: Make Keeper

Write a function that takes in a number n and returns a function that can take in
a single parameter cond. When we pass in some condition function cond into this
returned function, it will print out numbers from 1 to n where calling cond on that
number returns True.

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

6 Environment Diagrams, Higher-Order Functions

def make_keeper(n):
"""Returns a function which takes one parameter cond and prints
out all integers 1..i..n where calling cond(i) returns True.

>>> def is_even(x):
... # Even numbers have remainder 0 when divided by 2.
... return x % 2 == 0
>>> make_keeper(5)(is_even)
2
4
"""
"*** YOUR CODE HERE ***"

You can use more space on the back if you want

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Environment Diagrams, Higher-Order Functions 7

Currying
One important application of HOFs is converting a function that takes multiple
arguments into a chain of functions that each take a single argument. This is
known as currying. For example, the function below converts the pow function
into its curried form:

>>> def curried_pow(x):
def h(y):

return pow(x, y)
return h

>>> curried_pow(2)(3)
8

Q6: Curry2 Diagram

Draw the environment diagram that results from executing the code below.

def curry2(h):
def f(x):

def g(y):
return h(x, y)

return g
return f

make_adder = curry2(lambda x, y: x + y)
add_three = make_adder(3)
add_four = make_adder(4)
five = add_three(2)

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

8 Environment Diagrams, Higher-Order Functions

Extra Practice
Feel free to reference this section as extra practice when studying for the exam in
terms of tackling more involved or challenging problems.

Q7: HOF Diagram Practice

Draw the environment diagram that results from executing the code below.

n = 7

def f(x):
n = 8
return x + 1

def g(x):
n = 9
def h():

return x + 1
return h

def f(f, x):
return f(x + n)

f = f(g, n)
g = (lambda y: y())(f)

Q8: Match Maker

Implement match_k, which takes in an integer k and returns a function that takes
in a variable x and returns True if all the digits in x that are k apart are the same.

For example, match_k(2) returns a one argument function that takes in x and
checks if digits that are 2 away in x are the same.

match_k(2)(1010) has the value of x = 1010 and digits 1, 0, 1, 0 going from left
to right. 1 == 1 and 0 == 0, so the match_k(2)(1010) results in True.

match_k(2)(2010) has the value of x = 2010 and digits 2, 0, 1, 0 going from left
to right. 2 != 1 and 0 == 0, so the match_k(2)(2010) results in False.

Important: You may not use strings or indexing for this problem. You do not
have to use all the lines, one staff solution does not use the line directly above the
while loop.

Hint: Floor dividing by powers of 10 gets rid of the rightmost digits.

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Environment Diagrams, Higher-Order Functions 9

def match_k(k):
""" Return a function that checks if digits k apart match

>>> match_k(2)(1010)
True
>>> match_k(2)(2010)
False
>>> match_k(1)(1010)
False
>>> match_k(1)(1)
True
>>> match_k(1)(2111111111111111)
False
>>> match_k(3)(123123)
True
>>> match_k(2)(123123)
False
"""

while ____________________________:

if ____________________________:
return ____________________________

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

	Call Expressions
	Q1: Call Diagram
	Q2: Nested Calls Diagrams

	Lambda Expressions
	Q3: Lambda the Environment Diagram

	Higher Order Functions
	HOFs in Environment Diagrams
	Q4: Make Adder
	Q5: Make Keeper

	Currying
	Q6: Curry2 Diagram

	Extra Practice
	Q7: HOF Diagram Practice
	Q8: Match Maker

