Conclusion

file:///save/berkeley-cs61a/.scratch_3/src/slides/sp22/39-Conclusion.html?print-pdf#/

What did we learn?

file:///save/berkeley-cs61a/.scratch_3/src/slides/sp22/39-Conclusion.html?print-pdf#/1

Programming paradigms

Imperative programming: using statements to change a
program's state.

nums = [1, 2, 4]

for i in range (0, len(nums)) :
nums [1] = nums[i] ** 2

Functional programming: expressions, not statements; no
side-effects; use of higher-order functions.

list (map (lambda x: x ** 2, [1, 2, 4]))

(map (lambda (n) (expt n 2)) '(1 2 4))

file:///save/berkeley-cs61a/.scratch_3/src/slides/sp22/39-Conclusion.html?print-pdf#/2

Programming paradigms #2

Object-oriented and data-centric programming.

innocent_bee = Bee(5) .
horrible ant = Ant(10)
innocent bee.fend off (horrible ant)

(define t .

(tree 3
(list (tree 1 nil)
(tree 2 (list (tree 1 nil) (tree 1 nil))))))
(map label (branches t))

Declarative programming: State goals or properties of the
solution rather than procedures.

(.+)@(.+)\. (. {3}) .

calc_op: " (" OPERATOR calc_expr* ") .

file:///save/berkeley-cs61a/.scratch_3/src/slides/sp22/39-Conclusion.html?print-pdf#/3

Programming concepts

e Data storage:
= Primitive/simple types: booleans, numbers, strings
= Compound types: lists, linked lists, trees

e Environments: rules for how programs access and
modify named objects

e Higher-order functions: Functions as data values,
functions on functions

e Recursion: approaching a problem recursively, general
recursive patterns

e Mutability: mutable objects, mutation operations,
dangers of mutation

e Exceptions: Dealing with errors

o Efficiency: Different programs have different time/space
needs

file:///save/berkeley-cs61a/.scratch_3/src/slides/sp22/39-Conclusion.html?print-pdf#/4

Software engineering

e Abstractions, separation of concerns
e Specification of a program vs. its implementation

m Syntactic spec (header) vs. semantic spec (docstring).

= Example of multiple implementations for the same
abstract behavior

e Testing: for every program, there is a test.

file:///save/berkeley-cs61a/.scratch_3/src/slides/sp22/39-Conclusion.html?print-pdf#/5

Software engineering

e Abstractions, separation of concerns
e Specification of a program vs. its implementation
m Syntactic spec (header) vs. semantic spec (docstring).

= Example of multiple implementations for the same
abstract behavior

e Testing: for every program, there is a test.

Remember: code isn't just read by computers, it's also
read by humans.

file:///save/berkeley-cs61a/.scratch_3/src/slides/sp22/39-Conclusion.html?print-pdf#/5

What's next?

file:///save/berkeley-cs61a/.scratch_3/src/slides/sp22/39-Conclusion.html?print-pdf#/6

Practice programming

e Programming puzzles (HackerRank, LeetCode, Euler)
e Programming contests (Advent of Code, Kaggle)
Hackathons

More paradigms and languages (Web dev, Embedded)
The open-source world: Go out and build something!
Personal projects

Above all: Have fun!

file:///save/berkeley-cs61a/.scratch_3/src/slides/sp22/39-Conclusion.html?print-pdf#/7

Future CS courses

e CS61B: (conventional) data structures, statically typed production
languages.

e CS61C: computing architecture and hardware as programmers see it.

e CS70: Discrete Math and Probablilty Theory.

e CSC100: Data Science

e CS170, CS171, CS172, CS174: “Theory”—analysis and construction of
algorithms, cryptography, computability, complexity, combinatorics,
use of probabilistic algorithms and analysis.

e CS161: Security

e CS162: Operating systems.

e CS164: Implementation of programming languages

e CS168: Introduction to the Internet

e CS160, CS169: User interfaces, software engineering

e CS176: Computational Biology

file:///save/berkeley-cs61a/.scratch_3/src/slides/sp22/39-Conclusion.html?print-pdf#/8

Future CS courses #2

e CS182, CS188, CS189: Neural networks, Artificial intelligence, Machine
Learning

CS184: Graphics

CS186: Databases

CS191: Quantum Computing

CS195: Social Implications of Computing

EECS 16A, 16B: Designing Information Systems and Devices

EECS 126: Probabilty and Random Processes

EECS149: Embedded Systems

EECS 151: Digital Design

CS194: Special topics. (E.g.) computational photography and image
manipulation, cryptography, cyberwar.

Plus graduate courses on these subjects and more.

e And please don't forget CS199 and research projects.

file:///save/berkeley-cs61a/.scratch_3/src/slides/sp22/39-Conclusion.html?print-pdf#/9

Plus EE courses...

EE105: Microelectronic Devices and Circuits.

EE106: Robotics

EE118, EE134: Optical Engineering, Photovotalaic Devices.
EE120: Signals and Systems.

EE123: Digital Signal Processing.

EE126: Probability and Random Processes.

EE130: Integrated Circuit Devices.

EE137A: Power Circuits.

EE140: Linear Integrated Circuits (analog circuits, amplifiers).
EE142: Integrated Circuits for Communication.

EE143: Microfabrication Technology.

EE147: Micromechanical Systems (MEMS).

EE192: Mechatronic Design.

file:///save/berkeley-cs61a/.scratch_3/src/slides/sp22/39-Conclusion.html?print-pdf#/10

Learn more Python!

e More built-in data types: sets, deques, datetime

e Generator expressions

Threading, multiprocessing, queues

Nonlocal/global

More Python standard library modules: datetime, math,
functools, urllib, etc.

https://docs.python.org/3/library/datatypes.html
https://realpython.com/introduction-to-python-generators/#understanding-generators
https://docs.python.org/3/library/threading.html#module-threading
https://docs.python.org/3/library/multiprocessing.html
https://docs.python.org/3/library/queue.html
https://realpython.com/python-scope-legb-rule/
file:///save/berkeley-cs61a/.scratch_3/src/slides/sp22/39-Conclusion.html?print-pdf#/11

Fun with Python

file:///save/berkeley-cs61a/.scratch_3/src/slides/sp22/39-Conclusion.html?print-pdf#/12

What can you do with Python?

Almost anything!

e Webapp backends

e Web scraping

e Natural Language Processing

e Data analysis

e Machine Learning

e Scientific computing

e Games

e Procedural generation - L Systems, Noise, Markov

file:///save/berkeley-cs61a/.scratch_3/src/slides/sp22/39-Conclusion.html?print-pdf#/13

What can you do with Python?

Almost anything! Thanks to libraries!

e Webapp backends (Flask, Django)

e Web scraping (BeautifulSoup)

e Natural Language Processing (NLTK)

e Data analysis (Numpy, Pandas, Matplotlib)

e Machine Learning (FastAi, PyTorch, Keras)

e Scientific computing (SciPy)

e Games (Pygame)

e Procedural generation - L Systems, Noise, Markov

file:///save/berkeley-cs61a/.scratch_3/src/slides/sp22/39-Conclusion.html?print-pdf#/13

Web scraping & Markov chains

Web scraping: Getting data from webpages by traversing
the HTML.

Markov chain: A way to generate a sequence based on the
probabalistic next token.

4 \‘-. rd 3 ..\‘..
/__._———;, am 10— Sam. |

\ 0_33_______}
k I IF"-——_._ 0L am. ..__I
“—Tos3 .\‘\"'-:—f'.'-"\, A OOR
T % Jo—3 ot |
Mg

00 Demo: Composing Gobbledygooks

Further learning: urllib2 module, BeautifulSoup docs, N-Gram
modeling with Markov chains, CS70/EECS126 for Markov chains

https://replit.com/@PamelaFox2/BeautifulSoupDemo
https://docs.python.org/3/howto/urllib2.html
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://sookocheff.com/post/nlp/ngram-modeling-with-markov-chains/
file:///save/berkeley-cs61a/.scratch_3/src/slides/sp22/39-Conclusion.html?print-pdf#/14

Web APlIs

API (Application Programming Interface): A way to access
the functionality or data of another program.

Web APIs: A way to access the functionality or data of an
online web service. Typically over HTTP or via JavaScript.

00 Demo: Movie Mashups

Further learning: urllib2 module, The Movie DB API,
ProgrammableWeb

https://replit.com/@PamelaFox2/BeautifulSoupDemo-MovieMarkov
https://docs.python.org/3/howto/urllib2.html
https://developers.themoviedb.org/3
https://www.programmableweb.com/
file:///save/berkeley-cs61a/.scratch_3/src/slides/sp22/39-Conclusion.html?print-pdf#/15

Turtle & L-systems

Turtle: A library for drawing graphics (as if a pen is
controlled by a turtle).

L-system: A parallel rewriting system and a type of formal

grammar, developed originally by a biologist to model the
growth of plants.

Example: Axiom: A, Rules: A - AB, B - A

: A

: AB

: ABA

: ABAAB

8B BB
| | ||
w N P O

00 Demo: L Trees!

Further learning: turtle module, Tutorial: Turtles and Strings and L-
Systems, Algorithmic Botany: Graphical Modeling using L-systems, L-
system examples

https://replit.com/@PamelaFox2/LTreeDemo
https://docs.python.org/3/library/turtle.html
https://runestone.academy/runestone/books/published/thinkcspy/Strings/TurtlesandStringsandLSystems.html
http://paulbourke.net/fractals/lsys/
http://paulbourke.net/fractals/lsys/
file:///save/berkeley-cs61a/.scratch_3/src/slides/sp22/39-Conclusion.html?print-pdf#/16

Natural Language Processing

NLP includes language modeling, spelling correction, text
classification, sentiment analysis, information retrieval,
relation extraction, recommendation systems, translation
question answering, word vectors, and more.

00 Demo: Sentence trees!

Further learning: NLTK Book, NLTK Sentiment Analysis, Dan
Jurafsky's lectures and books, Berkeley classes: INFO 159, CS 288

https://replit.com/@PamelaFox2/NLPDemo#main.py
http://www.nltk.org/book/ch08.html
https://realpython.com/python-nltk-sentiment-analysis/
https://web.stanford.edu/~jurafsky/
file:///save/berkeley-cs61a/.scratch_3/src/slides/sp22/39-Conclusion.html?print-pdf#/17

Demo: Supervised Machine Learning

Labeled Training set
0 observations

Machine learner

Test set Prediction

model

stats

- e o e e o = = o

00 Demo: Bee vs. Wasp?

Further learning: FastAl Documentation, Kaggle ML tutorial, Bias in
ML, Berkeley classes: CS182, CS188, CS189

https://www.kaggle.com/vyombhatia/96-accuracy-with-7-lines-of-code
https://docs.fast.ai/
https://www.kaggle.com/learn/intro-to-machine-learning
https://www.khanacademy.org/computing/ap-computer-science-principles/data-analysis-101#x2d2f703b37b450a3:machine-learning-and-bias
file:///save/berkeley-cs61a/.scratch_3/src/slides/sp22/39-Conclusion.html?print-pdf#/18

What do you want to do?

There are so many possible programs that haven't been
made yet. What will you make?

file:///save/berkeley-cs61a/.scratch_3/src/slides/sp22/39-Conclusion.html?print-pdf#/19

