Final Examples

file:///save/berkeley-cs61a/.scratch_5/src/slides/sp22/38-Final_Examples.html?print-pdf#/

Class outline:

e Trees

e Recursive accumulation
e Regular expressions
Interpreters

file:///save/berkeley-cs61a/.scratch_5/src/slides/sp22/38-Final_Examples.html?print-pdf#/1

Trees

file:///save/berkeley-cs61a/.scratch_5/src/slides/sp22/38-Final_Examples.html?print-pdf#/2

Tree abstractions

In Python, using a class:

class Tree: .

def init (self, label, branches=[]):
self.label = label
self.branches = list (branches)

def is leaf (self):
return not self.branches

In Scheme, using procedures to build a data abstraction:

(define (tree label branches) .
(cons label branches))

(define (label t) (car t))
(define (branches t) (cdr t))

(define (is-leaf t) (null? (branches t)))

file:///save/berkeley-cs61a/.scratch_5/src/slides/sp22/38-Final_Examples.html?print-pdf#/3

Tree-structured data

A tree is a recursive structure, where each branch may
itself be a tree.

(5, [e, 71, 8, [[9], 10]]

(+5 (-6 7) 8 (x (-9) 10))

(NP (JJ Short) (NNS cuts))
(VP (VBP make)

(NP (JJ long) (NNS delays)))
(. .))

Midterm 1</1li>
Midterm 2</1i>

Tree processing often involves recursive calls on subtrees.

file:///save/berkeley-cs61a/.scratch_5/src/slides/sp22/38-Final_Examples.html?print-pdf#/4

Solving tree problems

Implement bigs, which takes a Tree instance t containing integer
labels. It returns the number of nodes in t whose labels are larger
than all labels of their ancestor nodes.

def bigs(t): .

nnnReturn the number of nodes in t that are larger than all their ancestors.
>>> g = Tree(l, [Tree(4, [Tree(4), Tree(5)]), Tree(3, [Tree(0, [Tree(2)]1)1)1])

>>> bigs(a)
4

1. Understand the question and function signature.

file:///save/berkeley-cs61a/.scratch_5/src/slides/sp22/38-Final_Examples.html?print-pdf#/5

Solving tree problems

Implement bigs, which takes a Tree instance t containing integer
labels. It returns the number of nodes in t whose labels are larger
than all labels of their ancestor nodes.

def bigs(t):
nnnReturn the number of nodes in t that are larger than all their ancestors.

>>> a = Tree(l, [Tree(4, [Tree(4), Tree(5)]), Tree(3, [Tree(0, [Tree(2)1)1)1]1)
>>> bigs(a)
4

1. Understand the question and function signature.
2. Make any diagrams that may be helpful.

n

A

file:///save/berkeley-cs61a/.scratch_5/src/slides/sp22/38-Final_Examples.html?print-pdf#/5

Solving tree problems

Implement bigs, which takes a Tree instance t containing integer
labels. It returns the number of nodes in t whose labels are larger
than all labels of their ancestor nodes.

def bigs(t):
nnnReturn the number of nodes in t that are larger than all their ancestors.

>>> a = Tree(l, [Tree(4, [Tree(4), Tree(5)]), Tree(3, [Tree(0, [Tree(2)1)1)1]1)
>>> bigs(a)
4

1. Understand the question and function signature.
2. Make any diagrams that may be helpful.
3. Work through the examples and make observations.

n

A

file:///save/berkeley-cs61a/.scratch_5/src/slides/sp22/38-Final_Examples.html?print-pdf#/5

Solving tree problems

Implement bigs, which takes a Tree instance t containing integer
labels. It returns the number of nodes in t whose labels are larger
than all labels of their ancestor nodes.

def bigs(t):
nnnReturn the number of nodes in t that are larger than all their ancestors.

>>> a = Tree(l, [Tree(4, [Tree(4), Tree(5)]), Tree(3, [Tree(0, [Tree(2)1)1)1]1)
>>> bigs(a)
4

1. Understand the question and function signature.
2. Make any diagrams that may be helpful.
3. Work through the examples and make observations.

n

A

file:///save/berkeley-cs61a/.scratch_5/src/slides/sp22/38-Final_Examples.html?print-pdf#/5

Solving tree problems

Implement bigs, which takes a Tree instance t containing integer
labels. It returns the number of nodes in t whose labels are larger
than all labels of their ancestor nodes.

def bigs(t):
nnnReturn the number of nodes in t that are larger than all their ancestors.

>>> a = Tree(l, [Tree(4, [Tree(4), Tree(5)]), Tree(3, [Tree(0, [Tree(2)1)1)1]1)
>>> bigs(a)
4

1. Understand the question and function signature.
2. Make any diagrams that may be helpful.
3. Work through the examples and make observations.

n

A

file:///save/berkeley-cs61a/.scratch_5/src/slides/sp22/38-Final_Examples.html?print-pdf#/5

Solving tree problems

Implement bigs, which takes a Tree instance t containing integer
labels. It returns the number of nodes in t whose labels are larger
than all labels of their ancestor nodes.

def bigs(t):
nnnReturn the number of nodes in t that are larger than all their ancestors.

>>> a = Tree(l, [Tree(4, [Tree(4), Tree(5)]), Tree(3, [Tree(0, [Tree(2)1)1)1]1)
>>> bigs(a)
4

1. Understand the question and function signature.
2. Make any diagrams that may be helpful.
3. Work through the examples and make observations.

n

A

file:///save/berkeley-cs61a/.scratch_5/src/slides/sp22/38-Final_Examples.html?print-pdf#/5

Solving tree problems

Implement bigs, which takes a Tree instance t containing integer
labels. It returns the number of nodes in t whose labels are larger
than all labels of their ancestor nodes.

def bigs(t):
nnnReturn the number of nodes in t that are larger than all their ancestors.

>>> a = Tree(l, [Tree(4, [Tree(4), Tree(5)]), Tree(3, [Tree(0, [Tree(2)1)1)1]1)
>>> bigs(a)
4

1. Understand the question and function signature.
2. Make any diagrams that may be helpful.
3. Work through the examples and make observations.

n

A

file:///save/berkeley-cs61a/.scratch_5/src/slides/sp22/38-Final_Examples.html?print-pdf#/5

Solving bigs #2

def bigs(t):

"nrReturn the number of nodes in t that are larger than all their ancestors.

>>> a = Tree(l, [Tree(4, [Tree(4), Tree(5)]), Tree(3, [Tree(0, [Tree(2)]1)]1)]1)
>>> bigs (a)
4

4. Consider what you expect to see in the solution.

file:///save/berkeley-cs61a/.scratch_5/src/slides/sp22/38-Final_Examples.html?print-pdf#/6

Solving bigs #2

def bigs(t):

nnnRpeturn the number of nodes in t that are larger than all their ancestors.

>>> a = Tree(l, [Tree(4, [Tree(4), Tree(5)]), Tree(3, [Tree(0, [Tree(2)]1)]1)]1)
>>> bigs (a)
4

4. Consider what you expect to see in the solution.

Typical tree processing structure?

if t.is leaf () :
return
else:

return ([for b in t.branches])

file:///save/berkeley-cs61a/.scratch_5/src/slides/sp22/38-Final_Examples.html?print-pdf#/6

Solving bigs #2

def bigs(t):

nnnReturn the number of nodes in t that are larger than all their ancestors.

>>> a = Tree(l, [Tree(4, [Tree(4), Tree(5)]), Tree(3, [Tree(0, [Tree(2)]1)1)])
>>> bigs (a)

4

4. Consider what you expect to see in the solution.

Typical tree processing structure?

if t.is leaf () :
return
else:

return ([for b in t.branches])

X That won't work, since we need to know about ancestors.

file:///save/berkeley-cs61a/.scratch_5/src/slides/sp22/38-Final_Examples.html?print-pdf#/6

Solving bigs #3

def bigs(t) .
"nrReturn the number of nodes in t that are larger than all their ancestors.
>>> a = Tree(l, [Tree(4, [Tree(4), Tree(5)]), Tree(3, [Tree(0, [Tree(2)]1)]1)1)
>>> bigs (a)
4

4. Consider what you expect to see in the solution.

file:///save/berkeley-cs61a/.scratch_5/src/slides/sp22/38-Final_Examples.html?print-pdf#/7

Solving bigs #3

def bigs(t) .
"nrReturn the number of nodes in t that are larger than all their ancestors.
>>> a = Tree(l, [Tree(4, [Tree(4), Tree(5)]), Tree(3, [Tree(0, [Tree(2)]1)]1)1)
>>> bigs (a)
4

4. Consider what you expect to see in the solution.

Some code that increments the total count

L ol

file:///save/berkeley-cs61a/.scratch_5/src/slides/sp22/38-Final_Examples.html?print-pdf#/7

Solving bigs #3

def bigs(t):

nnnRpeturn the number of nodes in t that are larger than all their ancestors.

>>> a = Tree(l, [Tree(4, [Tree(4), Tree(5)]), Tree(3, [Tree(0, [Tree(2)]1)]1)]1)
>>> bigs (a)

4

4. Consider what you expect to see in the solution.

Some code that increments the total count

Some way of tracking ancestor labels or max of ancestors seen so
far.

if node.label > max(ancestors) :

if node.label > max ancestor:

file:///save/berkeley-cs61a/.scratch_5/src/slides/sp22/38-Final_Examples.html?print-pdf#/7

Solving bigs #4

def bigs (t) .
nnnRpeturn the number of nodes in t that are larger than all their ancestors.
>>> a = Tree(l, [Tree(4, [Tree(4), Tree(5)]), Tree(3, [Tree(0, [Tree(2)1)1)1)
>>> bigs (a)
4

5. Check out the provided template.

def f(a, x):

if

return 1 +
else:
return

return

file:///save/berkeley-cs61a/.scratch_5/src/slides/sp22/38-Final_Examples.html?print-pdf#/8

Solving bigs #4
def bigs(t): .

"nrReturn the number of nodes in t that are larger than all their ancestors.

>>> a = Tree(l, [Tree(4, [Tree(4), Tree(5)]), Tree(3, [Tree(0, [Tree(2)]1)]1)]1)
>>> bigs (a)
4

5. Check out the provided template.
6. Figure out where what you expected fits into the
template.

def f(a, x):
if

return 1 +
else:
return

return

file:///save/berkeley-cs61a/.scratch_5/src/slides/sp22/38-Final_Examples.html?print-pdf#/8

Solving bigs #4
def bigs(t): .

"nrReturn the number of nodes in t that are larger than all their ancestors.

>>> a = Tree(l, [Tree(4, [Tree(4), Tree(5)]), Tree(3, [Tree(0, [Tree(2)]1)]1)]1)
>>> bigs (a)
4

5. Check out the provided template.
6. Figure out where what you expected fits into the
template.

def f(a, x):
if

return 1 + # Increment total
else:
return

return

file:///save/berkeley-cs61a/.scratch_5/src/slides/sp22/38-Final_Examples.html?print-pdf#/8

Solving bigs #4
def bigs(t): .

"nrReturn the number of nodes in t that are larger than all their ancestors.

>>> a = Tree(l, [Tree(4, [Tree(4), Tree(5)]), Tree(3, [Tree(0, [Tree(2)]1)]1)]1)
>>> bigs (a)
4

5. Check out the provided template.
6. Figure out where what you expected fits into the
template.

def f(a, x):
if : # Track the largest ancestor
return 1 + # Increment total
else:
return

return

file:///save/berkeley-cs61a/.scratch_5/src/slides/sp22/38-Final_Examples.html?print-pdf#/8

Solving bigs #4
def bigs(t): .

nnnReturn the number of nodes in t that are larger than all their ancestors.

>>> g = Tree(l, [Tree(4, [Tree(4), Tree(5)]), Tree(3, [Tree(0, [Tree(2)])1)])
>>> bigs (a)
4

Check out the provided template.
Figure out where what you expected fits into the
template.

Label any ambiguously named variables if its helpful.

def f(a, x):

if : # Track the largest ancestor
return 1 + # Increment total
else:

return

return

file:///save/berkeley-cs61a/.scratch_5/src/slides/sp22/38-Final_Examples.html?print-pdf#/8

Solving bigs #4
def bigs(t): .

nnnReturn the number of nodes in t that are larger than all their ancestors.

>>> g = Tree(l, [Tree(4, [Tree(4), Tree(5)]), Tree(3, [Tree(0, [Tree(2)])1)])
>>> bigs (a)
4

5. Check out the provided template.

6. Figure out where what you expected fits into the
template.

7. Label any ambiguously named variables if its helpful.

a is the current subtree, x is the largest ancestor .
def f(a, x):
if : # Track the largest ancestor
return 1 + # Increment total
else:
return

return

file:///save/berkeley-cs61a/.scratch_5/src/slides/sp22/38-Final_Examples.html?print-pdf#/8

Solving bigs #5

def bigs(t):

nnnRpeturn the number of nodes in t that are larger than all their ancestors.

>>> g = Tree(l, [Tree(4, [Tree(4), Tree(5)]), Tree(3, [Tree(0, [Tree(2)]1)]1)]1)
>>> bigs (a)
4

8. Finish filling in the skeleton.

def f(a, x):
if a.label > x:

return 1 + sum([f (b, a.label) for b in a.branches])
else:

return sum([f (b, x) for b in a.branches])
return f(t, t.label - 1)

file:///save/berkeley-cs61a/.scratch_5/src/slides/sp22/38-Final_Examples.html?print-pdf#/9

Solving bigs #6

def bigs(t):
nnnReturn the number of nodes in t that are larger than all their ancestors.

>>> a = Tree(l, [Tree(4, [Tree(4), Tree(5)]), Tree(3, [Tree(0, [Tree(2)1)1)1)
>>> bigs (a)
4
def f(a, x):
if a.label > x:
return 1 + sum([f (b, a.label) for b in a.branches])
else:
return sum([f (b, x) for b in a.branches])
return f(t, t.label - 1)

file:///save/berkeley-cs61a/.scratch_5/src/slides/sp22/38-Final_Examples.html?print-pdf#/10

Recursive accumulation

Initialize some data structure to an empty/zero value, and
populate it as you go.

file:///save/berkeley-cs61a/.scratch_5/src/slides/sp22/38-Final_Examples.html?print-pdf#/11

1.

Solving smalls

Implement smalls, which takes a Tree instance t containing integer
labels. It returns the non-leaf nodes in t whose labels are smaller
than any labels of their descendant nodes.

def smalls(t):
"mnReturn the non-leaf nodes in t that are smaller than all their descendants.

>>> a = Tree(l, [Tree(2, [Tree(4), Tree(5)]), Tree(3, [Tree(0, [Tree(6)]1)1)])
>>> gorted([t.label for t in smalls(a)])

[0, 2]

Understand the question and function signature.

file:///save/berkeley-cs61a/.scratch_5/src/slides/sp22/38-Final_Examples.html?print-pdf#/12

—_—

Solving smalls

Implement smalls, which takes a Tree instance t containing integer
labels. It returns the non-leaf nodes in t whose labels are smaller
than any labels of their descendant nodes.

def smalls(t):
"mnReturn the non-leaf nodes in t that are smaller than all their descendants.

>>> a = Tree(l, [Tree(2, [Tree(4), Tree(5)]), Tree(3, [Tree(0, [Tree(6)]1)1)])
>>> gorted([t.label for t in smalls(a)])

[0, 2]

Understand the question and function signature.
Make any diagrams that may be helpful.

5 %

A

file:///save/berkeley-cs61a/.scratch_5/src/slides/sp22/38-Final_Examples.html?print-pdf#/12

Solving smalls

Implement smalls, which takes a Tree instance t containing integer
labels. It returns the non-leaf nodes in t whose labels are smaller
than any labels of their descendant nodes.

def smalls(t):
"mnReturn the non-leaf nodes in t that are smaller than all their descendants.

>>> a = Tree(l, [Tree(2, [Tree(4), Tree(5)]), Tree(3, [Tree(0, [Tree(6)]1)1)])
>>> gorted([t.label for t in smalls(a)])

[0, 2]

1. Understand the question and function signature.
2. Make any diagrams that may be helpful.
3. Work through the examples and make observations.

5 %

A

file:///save/berkeley-cs61a/.scratch_5/src/slides/sp22/38-Final_Examples.html?print-pdf#/12

Solving smalls

Implement smalls, which takes a Tree instance t containing integer
labels. It returns the non-leaf nodes in t whose labels are smaller
than any labels of their descendant nodes.

def smalls(t):
"mnReturn the non-leaf nodes in t that are smaller than all their descendants.

>>> a = Tree(l, [Tree(2, [Tree(4), Tree(5)]), Tree(3, [Tree(0, [Tree(6)]1)1)])
>>> gorted([t.label for t in smalls(a)])

[0, 2]

1. Understand the question and function signature.
2. Make any diagrams that may be helpful.
3. Work through the examples and make observations.

5 %

A

file:///save/berkeley-cs61a/.scratch_5/src/slides/sp22/38-Final_Examples.html?print-pdf#/12

Solving smalls

Implement smalls, which takes a Tree instance t containing integer
labels. It returns the non-leaf nodes in t whose labels are smaller
than any labels of their descendant nodes.

def smalls(t):
"mnReturn the non-leaf nodes in t that are smaller than all their descendants.

>>> a = Tree(l, [Tree(2, [Tree(4), Tree(5)]), Tree(3, [Tree(0, [Tree(6)]1)1)])
>>> gorted([t.label for t in smalls(a)])

[0, 2]

1. Understand the question and function signature.
2. Make any diagrams that may be helpful.
3. Work through the examples and make observations.

5 %

A

file:///save/berkeley-cs61a/.scratch_5/src/slides/sp22/38-Final_Examples.html?print-pdf#/12

Solving smalls #2

def smalls(t):

"mnReturn the non-leaf nodes in t that are smaller than all their descendants.

>>> g = Tree(l, [Tree(2, [Tree(4), Tree(5)]), Tree(3, [Tree(0, [Tree(6)])]1)])
>>> gorted([t.label for t in smalls(a)l)
[0, 2]

4. Consider what you expect to see in the solution.

file:///save/berkeley-cs61a/.scratch_5/src/slides/sp22/38-Final_Examples.html?print-pdf#/13

Solving smalls #2

def smalls(t):

"mnReturn the non-leaf nodes in t that are smaller than all their descendants.

>>> a = Tree(l, [Tree(2, [Tree(4), Tree(5)]), Tree(3, [Tree(0, [Tree(6)]1)]1)])
>>> gorted([t.label for t in smalls(a)])
[0, 2]

4. Consider what you expect to see in the solution.

Something which finds the smallest value in a subtree

min ()

file:///save/berkeley-cs61a/.scratch_5/src/slides/sp22/38-Final_Examples.html?print-pdf#/13

Solving smalls #2

def smalls(t):

"mnReturn the non-leaf nodes in t that are smaller than all their descendants.

>>> a = Tree(l, [Tree(2, [Tree(4), Tree(5)]), Tree(3, [Tree(0, [Tree(6)]1)]1)])
>>> gorted([t.label for t in smalls(a)])

[0, 2]

4. Consider what you expect to see in the solution.

Something which finds the smallest value in a subtree

min ()

Something which compares smallest to current

t.label < gmallest

file:///save/berkeley-cs61a/.scratch_5/src/slides/sp22/38-Final_Examples.html?print-pdf#/13

Solving smalls #2

def smalls(t):
"mnReturn the non-leaf nodes in t that are smaller than all their descendants.

>>> a = Tree(l, [Tree(2, [Tree(4), Tree(5)]), Tree(3, [Tree(0, [Tree(6)]1)1)1)
>>> gorted([t.label for t in smalls(a)])
[0, 2]

4. Consider what you expect to see in the solution.

Something which finds the smallest value in a subtree

min ()

Something which compares smallest to current

t.label < smallest

Something which adds a subtree to a list

__.append(t)

file:///save/berkeley-cs61a/.scratch_5/src/slides/sp22/38-Final_Examples.html?print-pdf#/13

Solving smalls #3

def smalls(t):
"mnReturn the non-leaf nodes in t that are smaller than all their descendants.

>>> g = Tree(l, [Tree(2, [Tree(4), Tree(5)]), Tree(3, [Tree(0, [Tree(6)])]1)])
>>> gorted([t.label for t in smalls(a)l)
[0, 2]

5. Check out the provided template.

result = []
def process(t):
if t.is_leaf():
return
else:

smallest =
if

return min(smallest, t.label)
process (t)
return result

file:///save/berkeley-cs61a/.scratch_5/src/slides/sp22/38-Final_Examples.html?print-pdf#/14

Solving smalls #3

def smalls(t):
"mnReturn the non-leaf nodes in t that are smaller than all their descendants.

>>> a = Tree(l, [Tree(2, [Tree(4), Tree(5)]), Tree(3, [Tree(0, [Tree(6)])]1)])
>>> gorted([t.label for t in smalls(a)l)
[0, 2]

5. Check out the provided template.
6. Figure out where what you expected fits into the template.

result = []
def process(t):
if t.is_leaf ():
return
else:

smallest =
if

return min(smallest, t.label)
process (t)
return result

file:///save/berkeley-cs61a/.scratch_5/src/slides/sp22/38-Final_Examples.html?print-pdf#/14

Solving smalls #3

def smalls(t):
"mnReturn the non-leaf nodes in t that are smaller than all their descendants.

>>> a = Tree(l, [Tree(2, [Tree(4), Tree(5)]), Tree(3, [Tree(0, [Tree(6)])]1)])
>>> gorted([t.label for t in smalls(a)l)
[0, 2]

5. Check out the provided template.
6. Figure out where what you expected fits into the template.

result = []
def process(t):
if t.is_leaf():
return
else:
smallest = # Finds smallest
if

return min(smallest, t.label)
process (t)
return result

file:///save/berkeley-cs61a/.scratch_5/src/slides/sp22/38-Final_Examples.html?print-pdf#/14

Solving smalls #3

def smalls(t):
"mnReturn the non-leaf nodes in t that are smaller than all their descendants.

>>> a = Tree(l, [Tree(2, [Tree(4), Tree(5)]), Tree(3, [Tree(0, [Tree(6)])]1)])
>>> gorted([t.label for t in smalls(a)l)
[0, 2]

5. Check out the provided template.
6. Figure out where what you expected fits into the template.

result = []
def process(t):
if t.is_leaf():

return
else:
smallest = # Finds smallest
if : # Compares smallest

return min(smallest, t.label)
process (t)
return result

file:///save/berkeley-cs61a/.scratch_5/src/slides/sp22/38-Final_Examples.html?print-pdf#/14

Solving smalls #3

def smalls(t):
"mnReturn the non-leaf nodes in t that are smaller than all their descendants.

>>> a = Tree(l, [Tree(2, [Tree(4), Tree(5)]), Tree(3, [Tree(0, [Tree(6)])]1)])
>>> gorted([t.label for t in smalls(a)l)
[0, 2]

5. Check out the provided template.
6. Figure out where what you expected fits into the template.

result = [] # The result list
def process(t):
if t.is_leaf():

return
else:
smallest = # Finds smallest
if : # Compares smallest

Appends subtree to list

return min(smallest, t.label)
process (t)
return result

file:///save/berkeley-cs61a/.scratch_5/src/slides/sp22/38-Final_Examples.html?print-pdf#/14

o o

Solving smalls #3

def smalls(t):
"mnReturn the non-leaf nodes in t that are smaller than all their descendants.

>>> a = Tree(l, [Tree(2, [Tree(4), Tree(5)]), Tree(3, [Tree(0, [Tree(6)])]1)])
>>> gorted([t.label for t in smalls(a)l)
[0, 2]

Check out the provided template.
Figure out where what you expected fits into the template.
Label any ambiguously named variables if its helpful.

result = [] # The result list
def process(t):
if t.is_leaf():

return
else:
smallest = # Finds smallest
if : # Compares smallest

Appends subtree to list

return min(smallest, t.label)
process (t)
return result

file:///save/berkeley-cs61a/.scratch_5/src/slides/sp22/38-Final_Examples.html?print-pdf#/14

o o

Solving smalls #3

def smalls(t):
"mnReturn the non-leaf nodes in t that are smaller than all their descendants.

>>> a = Tree(l, [Tree(2, [Tree(4), Tree(5)]), Tree(3, [Tree(0, [Tree(6)])]1)])
>>> gorted([t.label for t in smalls(a)l)
[0, 2]

Check out the provided template.
Figure out where what you expected fits into the template.
Label any ambiguously named variables if its helpful.

result = [] # The result list
def process(t): # t is a Tree
if t.is_leaf():

return
else:
smallest = # Finds smallest
if : # Compares smallest

Appends subtree to list

return min(smallest, t.label)
process (t)
return result

file:///save/berkeley-cs61a/.scratch_5/src/slides/sp22/38-Final_Examples.html?print-pdf#/14

Solving smalls #4

def smalls(t):

"mnReturn the non-leaf nodes in t that are smaller than all their descendants.

>>> g = Tree(l, [Tree(2, [Tree(4), Tree(5)]), Tree(3, [Tree(0, [Tree(6)])]1)])
>>> gorted([t.label for t in smalls(a)l)
[0, 2]

8. Finish filling in the skeleton.

result = []
def process (t):
if t.is_leaf ():
return t.label
else:
smallest = min([process (b) for b in t.branches])
if t.label < smallest:
result.append(t)
return min(smallest, t.label)
process (t)
return result

file:///save/berkeley-cs61a/.scratch_5/src/slides/sp22/38-Final_Examples.html?print-pdf#/15

Solving smalls #5

def smalls(t):
"wrReturn the non-leaf nodes in t that are smaller than all their descendants.

>>> a = Tree(l, [Tree(2, [Tree(4), Tree(5)]), Tree(3, [Tree(0, [Tree(6)])1)])
>>> gorted([t.label for t in smalls(a)l)

[0, 2]

result = []

def process (t):
if t.is_leaf():
return t.label
else:
smallest = min([process(b) for b in t.branches])
if t.label < smallest:
result.append (t)
return min(smallest, t.label)
process (t)
return result

8. Check your work! :

file:///save/berkeley-cs61a/.scratch_5/src/slides/sp22/38-Final_Examples.html?print-pdf#/16

Regular expressions

file:///save/berkeley-cs61a/.scratch_5/src/slides/sp22/38-Final_Examples.html?print-pdf#/17

Matching patterns

Which strings are matched by each regular expression?

Expressions:

abc cab bac baba ababca aabcc abbal

[abc]*

a*b*cx*

ab|[bc]*

(a[bc]+)+a?

(ab|ba)+
(ab|[bc])?

file:///save/berkeley-cs61a/.scratch_5/src/slides/sp22/38-Final_Examples.html?print-pdf#/18

Matching patterns

Which strings are matched by each regular expression?

Expressions: abc cab bac baba ababca aabcc abbal

[abc]* v v v / M 4
a*b*c* / X X X X / X
ab|[bc]* X X X X X X X
(a[bcl+)+a? X X X «/ X «/
(ab|ba)+ 4 X 4 Z X X Z

(ab|[bc])?

file:///save/berkeley-cs61a/.scratch_5/src/slides/sp22/38-Final_Examples.html?print-pdf#/18

Interpreters

file:///save/berkeley-cs61a/.scratch_5/src/slides/sp22/38-Final_Examples.html?print-pdf#/19

Interpreter analysis

What expressions are passed to scheme eval when
evaluating the following expressions?

(define x (+ 1 2))
(define (f yv) (+ x v))

(£ (1f (> 3 2) 4 5))

file:///save/berkeley-cs61a/.scratch_5/src/slides/sp22/38-Final_Examples.html?print-pdf#/20

Interpreter analysis

What expressions are passed to scheme eval when
evaluating the following expressions?

(define (f yv) (+ x v))

(£ (1f (> 3 2) 4 5))

file:///save/berkeley-cs61a/.scratch_5/src/slides/sp22/38-Final_Examples.html?print-pdf#/20

Interpreter analysis

What expressions are passed to scheme eval when
evaluating the following expressions?

(define (f yv) (+ x v))

(£ (1f (> 3 2) 4 5))

file:///save/berkeley-cs61a/.scratch_5/src/slides/sp22/38-Final_Examples.html?print-pdf#/20

Interpreter analysis

What expressions are passed to scheme eval when
evaluating the following expressions?

(define (f yv) (+ x v))

(£ (1f (> 3 2) 4 5))

file:///save/berkeley-cs61a/.scratch_5/src/slides/sp22/38-Final_Examples.html?print-pdf#/20

Interpreter analysis

What expressions are passed to scheme eval when
evaluating the following expressions?

(define XE(}Q?lE 2)b§

‘

(define (f yv) (+ x v))

(£ (1f (> 3 2) 4 5))

file:///save/berkeley-cs61a/.scratch_5/src/slides/sp22/38-Final_Examples.html?print-pdf#/20

Interpreter analysis

What expressions are passed to scheme eval when
evaluating the following expressions?

g(define XE(}H§1€§2bbE

‘

(define (f yv) (+ x v))

(£ (1f (> 3 2) 4 5))

file:///save/berkeley-cs61a/.scratch_5/src/slides/sp22/38-Final_Examples.html?print-pdf#/20

Interpreter analysis

What expressions are passed to scheme eval when
evaluating the following expressions?

(define x | (+|i1;i2})) |

file:///save/berkeley-cs61a/.scratch_5/src/slides/sp22/38-Final_Examples.html?print-pdf#/20

Interpreter analysis

What expressions are passed to scheme eval when
evaluating the following expressions?

(define x | (+| i1;i2})) |

file:///save/berkeley-cs61a/.scratch_5/src/slides/sp22/38-Final_Examples.html?print-pdf#/20

Interpreter analysis

What expressions are passed to scheme eval when
evaluating the following expressions?

(define x | (+|i1;i2})) |

file:///save/berkeley-cs61a/.scratch_5/src/slides/sp22/38-Final_Examples.html?print-pdf#/20

Interpreter analysis

What expressions are passed to scheme eval when
evaluating the following expressions?

(define x | (+|i1;i2})) |

file:///save/berkeley-cs61a/.scratch_5/src/slides/sp22/38-Final_Examples.html?print-pdf#/20

Interpreter analysis

What expressions are passed to scheme eval when
evaluating the following expressions?

(define x | (+|i1;i2})) |

file:///save/berkeley-cs61a/.scratch_5/src/slides/sp22/38-Final_Examples.html?print-pdf#/20

Interpreter analysis

What expressions are passed to scheme eval when
evaluating the following expressions?

(define x | (+|i1;i2})) |

file:///save/berkeley-cs61a/.scratch_5/src/slides/sp22/38-Final_Examples.html?print-pdf#/20

Interpreter analysis

What expressions are passed to scheme eval when
evaluating the following expressions?

(define x | (+| i1;i2})) |

file:///save/berkeley-cs61a/.scratch_5/src/slides/sp22/38-Final_Examples.html?print-pdf#/20

Interpreter analysis

What expressions are passed to scheme eval when
evaluating the following expressions?

(define x | (+|i1;i2})) |

file:///save/berkeley-cs61a/.scratch_5/src/slides/sp22/38-Final_Examples.html?print-pdf#/20

Interpreter analysis

What expressions are passed to scheme eval when
evaluating the following expressions?

(define x | (+|i1;i2})) |

file:///save/berkeley-cs61a/.scratch_5/src/slides/sp22/38-Final_Examples.html?print-pdf#/20

Interpreter analysis

What expressions are passed to scheme eval when
evaluating the following expressions?

(define x (12D)

E(define (f v) i(+ N Y)}yﬁ

(£ (£ [(>1 13 12) 14 5))]

file:///save/berkeley-cs61a/.scratch_5/src/slides/sp22/38-Final_Examples.html?print-pdf#/20

Interpreter analysis

What expressions are passed to scheme eval when
evaluating the following expressions?

(define x | (+|i1;i2})) |

file:///save/berkeley-cs61a/.scratch_5/src/slides/sp22/38-Final_Examples.html?print-pdf#/20

Interpreter analysis

What expressions are passed to scheme eval when
evaluating the following expressions?

(define x | (+|i1;i2})) |

file:///save/berkeley-cs61a/.scratch_5/src/slides/sp22/38-Final_Examples.html?print-pdf#/20

Interpreter analysis

What expressions are passed to scheme eval when
evaluating the following expressions?

(define x | (+|i1;i2})) |

file:///save/berkeley-cs61a/.scratch_5/src/slides/sp22/38-Final_Examples.html?print-pdf#/20

