Backus-Naur
Form


file:///save/berkeley-cs61a/.scratch_4/src/slides/sp22/35-Backus-Naur_Form.html?print-pdf#/
file:///save/berkeley-cs61a/.scratch_4/src/slides/sp22/35-Backus-Naur_Form.html?print-pdf#

Class outline:

e Backus-Naur Form

e (E)BNF syntax

e Parse tree formation
e Exercises

e Ambiguity


file:///save/berkeley-cs61a/.scratch_4/src/slides/sp22/35-Backus-Naur_Form.html?print-pdf#/1

Backus-Naur Form


file:///save/berkeley-cs61a/.scratch_4/src/slides/sp22/35-Backus-Naur_Form.html?print-pdf#/2

Describing language syntax

BNF was invented in 1960 to describe the ALGOL language
and is now used to describe many programming
languages.

An example BNF grammar from the Python docs:

dict_display: "{" [key list | dict_comprehension] "}™"
key list: key datum ("," key datum)* [","]

key datum: expression ":" expression
dict_comprehension: expression ":" expression comp_for

A BNF grammar can be used as a form of documentation,
or even as a way to automatically create a parser for a

language.


file:///save/berkeley-cs61a/.scratch_4/src/slides/sp22/35-Backus-Naur_Form.html?print-pdf#/3

BNF vs. Regular expressions

BNF is more powerful than regular expressions. For example, regular
expressions cannot accurately match a language (like Scheme) in
which parentheses balance and can be arbitrarily nested.





file:///save/berkeley-cs61a/.scratch_4/src/slides/sp22/35-Backus-Naur_Form.html?print-pdf#/4

BNF vs. Regular expressions

BNF is more powerful than regular expressions. For example, regular
expressions cannot accurately match a language (like Scheme) in
which parentheses balance and can be arbitrarily nested.

In formal language theory, BNF can describe "context-free
languages" whereas regular expressions can only describe "regular
languages".



Type O - Unrestricted

Type 1 - Context-Sensitive

Type 2 - Context-Free

Type 3 - Regula


file:///save/berkeley-cs61a/.scratch_4/src/slides/sp22/35-Backus-Naur_Form.html?print-pdf#/4

Basic BNF

A BNF grammar consists of a set of grammar rules. We will
specifically use the rule syntax supported by the Lark Python
package.

The basic form of a grammar rule:

symbole: symboli symbol2 ... symboln

Symbols represent sets of strings and come in 2 flavors:

¢ Non-terminal symbols: Can expand into either non-terminal
symbols (themselves) or terminals.

e Terminal symbols: Strings (inside double quotes) or regular
expressions (inside forward slashes).

To give multiple alternative rules for a non-terminal, use |:

symboloe: symboli | symbol:2


https://lark-parser.readthedocs.io/en/latest/
file:///save/berkeley-cs61a/.scratch_4/src/slides/sp22/35-Backus-Naur_Form.html?print-pdf#/5

BNF example

A simple grammar with three rules:

?start: numbers

numbers: INTEGER | numbers "," INTEGER
INTEGER: /-?2\d+/

For the Lark library,
e Grammars need to start with a start symbol.

e Non-terminal symbol names are written in lowercase.
e Terminal symbols are written in UPPERCASE.

What strings are described by that grammar?


file:///save/berkeley-cs61a/.scratch_4/src/slides/sp22/35-Backus-Naur_Form.html?print-pdf#/6

BNF example

A simple grammar with three rules:

?start: numbers

numbers: INTEGER | numbers "," INTEGER
INTEGER: /-?2\d+/

For the Lark library,
e Grammars need to start with a start symbol.

e Non-terminal symbol names are written in lowercase.
e Terminal symbols are written in UPPERCASE.

What strings are described by that grammar?

10
10, -11
10,-11,12


file:///save/berkeley-cs61a/.scratch_4/src/slides/sp22/35-Backus-Naur_Form.html?print-pdf#/6

Trying out BNF grammars

You can paste a BNF grammar in code.cs6l1a.org, and it will be
automatically recognized and processed by Lark as long as the first
line starts with ?start:.

If the grammar is parsed successfully, then you can type strings
from the language in the prompt.

lark> 10, -11

If the string can be parsed according to the grammar, a parse tree
appears!

numbers

A 4

numbers


file:///save/berkeley-cs61a/.scratch_4/src/slides/sp22/35-Backus-Naur_Form.html?print-pdf#/7

Defining terminals

Terminals are the base cases of the grammar (like the
tokens from the Scheme project).

In Lark grammars, they can be written as:

¢ Quoted strings which simply match themselves (e.g. "*" or
"define")

e Regular expressions surrounded by / on both sides (e.g. /\d+/)

e Symbols written in uppercase which are defined by lexical rules
(e.g. NUMBER: /\d+(\.\d+)/

It's common to want to always ignore some terminals
before matching. You can do that in Lark by adding an
%ignore directive at the end of the grammar.

%ignore /\s+/ // Ignores all whitespace


file:///save/berkeley-cs61a/.scratch_4/src/slides/sp22/35-Backus-Naur_Form.html?print-pdf#/8

Example: Sentences

?start: sentence

sentence: noun_phrase verb
noun: NOUN

noun_phrase: article noun

article : | ARTICLE // The first option matches ""
verb: VERB

NOUN: "horse" | "dog" | "hamster"

ARTICLE: "a" | "the"

VERB: "stands" | "walks" | "jumps"

%ignore /\s+/

What strings can this grammar parse?


file:///save/berkeley-cs61a/.scratch_4/src/slides/sp22/35-Backus-Naur_Form.html?print-pdf#/9

Example: Sentences

?start: sentence

sentence: noun_phrase verb
noun: NOUN

noun_phrase: article noun

article : | ARTICLE // The first option matches ""
verb: VERB

NOUN: "horse" | "dog" | "hamster"

ARTICLE: "a" | "the"

VERB: "stands" | "walks" | "jumps"

%ignore /\s+/
What strings can this grammar parse?

the horse jumps
a dog walks
hamster stands


file:///save/berkeley-cs61a/.scratch_4/src/slides/sp22/35-Backus-Naur_Form.html?print-pdf#/9

Repetition

EBNF is an extension to BNF that supports some
shorthand notations for specifying how many of a
particular symbol to match.

EBNF Meaning BNF equiv

item* Zero or more items items: | items item

item+ One or more items items: item | items item

item? Optional item optitem: | item

All of our grammars for Lark can use EBNF shorthands.


file:///save/berkeley-cs61a/.scratch_4/src/slides/sp22/35-Backus-Naur_Form.html?print-pdf#/10

Grouping

Parentheses can be used for grouping.

?start: list

list: ( NAME | NUM )+
NAME: /[a-zA-Z]+/
NUM: /\d+/

%ignore /\s/
Square brackets indicate an optional group.

numbered list: ( NAME [ ":" NUM ] )+

Exercise: Describe a comma-separated list of zero or
more names (no comma at the end).


file:///save/berkeley-cs61a/.scratch_4/src/slides/sp22/35-Backus-Naur_Form.html?print-pdf#/11

Grouping

Parentheses can be used for grouping.

?start: list

list: ( NAME | NUM )+
NAME: /[a-zA-Z]+/
NUM: /\d+/

%ignore /\s/
Square brackets indicate an optional group.

numbered list: ( NAME [ ":" NUM ] )+

Exercise: Describe a comma-separated list of zero or
more names (no comma at the end).

comma_separated_list: [ NAME ("," NAME) * ]


file:///save/berkeley-cs61a/.scratch_4/src/slides/sp22/35-Backus-Naur_Form.html?print-pdf#/11

Importing common terminals

Lark also provides pre-defined terminals for common
types of data to match.

%1import common.NUMBER m
%1import common.SIGNED_ NUMBER

%import common.DIGIT

%import common.HEXDIGIT

See all here


https://github.com/lark-parser/lark/blob/master/lark/grammars/common.lark
file:///save/berkeley-cs61a/.scratch_4/src/slides/sp22/35-Backus-Naur_Form.html?print-pdf#/12

Example: Calculator

A BNF for the Calculator language:

?start: calc_expr
?calc_expr: NUMBER | calc_op
calc_op: " (" OPERATOR calc_expr* ")

OPERATOR: "+n" | n_n | nn | |I/ll

%ignore /\s+/
%import common.NUMBER


file:///save/berkeley-cs61a/.scratch_4/src/slides/sp22/35-Backus-Naur_Form.html?print-pdf#/13

Calculator tree breakdown

?start: calc_expr

?calc_expr: NUMBER | calc_op
calc_op: " (" OPERATOR calc_expr* ")"
OPERATOR: "+" | m-n | mu%xn | n/n

e Terminals are always leaf values, never branches.

e Lark removes unnamed literals entirely (like " (") but does show
the values of named terminals (like OPERATOR) or unnamed regular
expressions.

e Lark removes any nodes whose rules start with ? and have only
one child, replacing them with that child (like calc expr).



Because the tree is simplified, we call it an abstract syntax tree.


file:///save/berkeley-cs61a/.scratch_4/src/slides/sp22/35-Backus-Naur_Form.html?print-pdf#/14

Exercises


file:///save/berkeley-cs61a/.scratch_4/src/slides/sp22/35-Backus-Naur_Form.html?print-pdf#/15

Exercise: Python comparisons

Write a BNF that can parse simple Python comparisons
between numbers: 5 > 2, 3 < 5, 32 == 33, etc.

The comparison 5 > 2 should result in this parse tree:

?start: comparison
comparison:

%ignore /\s+/
%1import common.NUMBER


file:///save/berkeley-cs61a/.scratch_4/src/slides/sp22/35-Backus-Naur_Form.html?print-pdf#/16

Exercise: Python comparisons (Solution)

Write a BNF that can parse simple Python comparisons
between numbers: 5 > 2, 3 < 5, 32 == 33, etc.

The comparison 5 > 2 should result in this parse tree:

?start: comparison m
comparison: NUMBER COMPARATOR NUMBER
COMPARATOR: n——un | n>n | nen

%ignore /\s+/
%1import common.NUMBER


file:///save/berkeley-cs61a/.scratch_4/src/slides/sp22/35-Backus-Naur_Form.html?print-pdf#/17

Exercise: Python ands

Write a BNF that can parse simple comparisons or Python
and expressions with those simple comparisons:
5>2,5>2and 3 <5,5>2and 3 <5 and 2 < 4.

5 > 2 and 2 < 3 should result in this parse tree:

Note: An and expression may itself contain nested ands.

Start from the previous solution.


file:///save/berkeley-cs61a/.scratch_4/src/slides/sp22/35-Backus-Naur_Form.html?print-pdf#/18

Exercise: Python ands (Solution)

Write a BNF that can parse simple comparisons or Python
and expressions with those simple comparisons:
5>2,5>2and 3 <5,5>2and 3 <5and 2 < 4.

Note: An and expression may itself contain nested ands.

?start: expression m
?expression: and_expression | comparison

and_expression: expression "and" expression
comparison: NUMBER COMPARATOR NUMBER

COMPARATOR: ">" | n<n | w==n

%ignore /\s+/
%1import common.NUMBER


file:///save/berkeley-cs61a/.scratch_4/src/slides/sp22/35-Backus-Naur_Form.html?print-pdf#/19

Exercise: Python and/ors

Add support for or expressions to previous BNF.
5>2,5>20r3<5,5>2and 3 <5o0r2«<4,.

5> 2 and 2 < 3 or 3 > 4 should result in this tree:



file:///save/berkeley-cs61a/.scratch_4/src/slides/sp22/35-Backus-Naur_Form.html?print-pdf#/20

Exercise: Python and/ors (Solution)

Add support for or expressions to previous BNF.
5>2,5>20r3<5,5>2and 3 <5o0r2«<4,.

5> 2 and 2 < 3 or 3 > 4 should result in this tree:

?start: expression m
?expression: or_expression | and_expression comparison
Oor_expression: expression "or" expression

and_expression: expression "and" expression

comparison: NUMBER COMPARATOR NUMBER

COMPARATOR: ">" | n<n | n==n

%ignore /\s+/
%1import common.NUMBER


file:///save/berkeley-cs61a/.scratch_4/src/slides/sp22/35-Backus-Naur_Form.html?print-pdf#/21

Resolving ambiguity


file:///save/berkeley-cs61a/.scratch_4/src/slides/sp22/35-Backus-Naur_Form.html?print-pdf#/22

Ambiguity

Ambiguity arises when a grammar supports multiple
possible parses of the same string.

Python infix expression grammar:

?start: expr

?expr: NUMBER | expr OPERATOR expr
OPERATOR L L | nm_n | nxn | " / n

What tree should we get for 3+7*27?





file:///save/berkeley-cs61a/.scratch_4/src/slides/sp22/35-Backus-Naur_Form.html?print-pdf#/23

Ambiguity resolution

One way to resolve this ambiguity:

?start: expr
?expr: add_expr
?add_expr: mul_expr | add_expr ADDOP mul_expr

?mul_expr: NUMBER | mul_expr MULOP NUMBER

ADDOP . nyn | nm_n
MULOP: "*n | n / "

That grammar can only produce this parse tree:



file:///save/berkeley-cs61a/.scratch_4/src/slides/sp22/35-Backus-Naur_Form.html?print-pdf#/24

BNF Tips

e Check your parse trees on code.cs6la.org
e Consider whether a ? should be in front of a non-
terminal


file:///save/berkeley-cs61a/.scratch_4/src/slides/sp22/35-Backus-Naur_Form.html?print-pdf#/25

