Regular
expressions

file:///save/berkeley-cs61a/.scratch_7/src/slides/sp22/34-Regular_Expressions.html?print-pdf#/
file:///save/berkeley-cs61a/.scratch_7/src/slides/sp22/34-Regular_Expressions.html?print-pdf#

Class outline:

e Declarative languages
e Regular expression syntax
e Regular expressions in Python

file:///save/berkeley-cs61a/.scratch_7/src/slides/sp22/34-Regular_Expressions.html?print-pdf#/1

Declarative languages

file:///save/berkeley-cs61a/.scratch_7/src/slides/sp22/34-Regular_Expressions.html?print-pdf#/2

Declarative programming

In imperative languages:

e A "program" is a description of computational processes
e The interpreter carries out execution/evaluation rules

In declarative languages:

e A "program" is a description of the desired result

e The interpreter figures out how to generate the result
e Examples:
m Regular expressions: Good (?:morning|evening)
m Backus-Naur Form:
?calc _expr: NUMBER | calc op
calc op: "(" OPERATOR calc expr* ")"
OPERATOR: "+" | "-" | "x" | /"

file:///save/berkeley-cs61a/.scratch_7/src/slides/sp22/34-Regular_Expressions.html?print-pdf#/3

Domain-specific languages

Many declarative languages are domain-specific: they are
designed to tackle problems in a particular domain,
instead of being general purpose multi-domain
programming languages.

Language Domain

Regular Pattern-matching strings

expressions

Backus-Naur Parsing strings into parse trees

Form

SQL Querying and modifying database tables

HTML Describing the semantic structure of webpage
content

CSS Styling webpages based on selectors

Prolog Describes and queries logical relations

file:///save/berkeley-cs61a/.scratch_7/src/slides/sp22/34-Regular_Expressions.html?print-pdf#/4

Regular expressions

file:///save/berkeley-cs61a/.scratch_7/src/slides/sp22/34-Regular_Expressions.html?print-pdf#/5

Pattern matching

Pattern matching in strings is a common problem in
computer programming.

An imperative approach:

def is email address(str):
parts = str.split('@')
if len(parts) != 2:
return False
domain_parts = parts[l].split('.")
return len(domain_parts) >= 2 and len(domain_parts[-1]) == 3

file:///save/berkeley-cs61a/.scratch_7/src/slides/sp22/34-Regular_Expressions.html?print-pdf#/6

Pattern matching

Pattern matching in strings is a common problem in
computer programming.

An imperative approach:

def is email address(str):
parts = str.split('e@')
if len(parts) != 2:
return False
domain_parts = parts[l].split('.")
return len (domain_parts) >= 2 and len(domain_parts[-1]) == 3

An equivalent regular expression:

(.H)e(.+)\. (.{3})

With regular expressions, a programmer can just describe the
pattern using a common syntax, and a regular expression engine
figures out how to do the pattern matching for them.

file:///save/berkeley-cs61a/.scratch_7/src/slides/sp22/34-Regular_Expressions.html?print-pdf#/6

Matching exact strings

The following are special characters in regular
expressions: \ () [I {}+*7?2] $".

To match an exact string that has no special characters,
just use the string:

Berkeley, CA 94720
Fully matched by: Berkeley, CA 94720

But if the matched string contains special characters, they
must be escaped using a backslash.

\ (1\+3\)

Fully matched by: (1+3)

file:///save/berkeley-cs61a/.scratch_7/src/slides/sp22/34-Regular_Expressions.html?print-pdf#/7

The dot

The . character matches any single character that is not
a new line.

.d.d.da
Fully matched by: banana

It's typically better to match a more specific range of characters,
however...

file:///save/berkeley-cs61a/.scratch_7/src/slides/sp22/34-Regular_Expressions.html?print-pdf#/8

Character classes

Pattern Description Example

Fully Matched By

[]

Denotes a character
class. Matches
characters in a set
(including ranges of
characters like 0-9).
Use [~] to match
characters outside a
set.

[top]
[h-p]

t

Matches any character
other than the newline
character.

17

\d

Matches any digit
character. Equivalent to
[0-9]. \D matches the
inverse (all non-digit
characters).

\d\d

12

\w

Matches any word
character. Equivalent to
[A-Za-z0-9 1. \W
matches the inverse.

\d\w

47

\sS

Matches any
whitespace character:
spaces, tabs, or line
breaks. \S matches the

\d\s\w

9 a

file:///save/berkeley-cs61a/.scratch_7/src/slides/sp22/34-Regular_Expressions.html?print-pdf#/9

Quantifiers

These indicate how many of a character/character class to match.

Pattern Description Example Fully Matched By

Matches O or more
* of the previous a* dad
pattern.

Matches 1 or more
+ of the previous lo+1 lool
pattern.

Matches O or 1 of
? the previous lo?l lol

pattern.

Used like {Min,
{} Max} . Matches a a{2} da

quantity between

Min and Max of the a{z } }

previous pattern.

ddadaddad

a{2,4}
ada

file:///save/berkeley-cs61a/.scratch_7/src/slides/sp22/34-Regular_Expressions.html?print-pdf#/10

Combining patterns

Patterns P: and P2 can be combined in various ways.

Combination Description Example Fully Matched By

A match for P1

PiP:2 followed ab[.,] ab,
immediately by one
for Pa.
Matches anything

Pi1]|P2 that either Pror P2 \d+|Inf Inf

does.

Matches whatever
(P1) P1 does. (<3)+ <3<3<3
Parentheses group,
just as in arithmetic
expressions.

file:///save/berkeley-cs61a/.scratch_7/src/slides/sp22/34-Regular_Expressions.html?print-pdf#/11

Anchors

These don't match an actual character, they indicate the
position where the surrounding pattern should be found.

Pattern Description Example What parts match?

A Matches the beginning A
of a string. aw+ aww aww
Matches th d of
$ starlincg.es SRR A\why$ stay stay
Matches a word .
\b boundary, the \w+e\b broken bridge team

beginning or end of a
word.

file:///save/berkeley-cs61a/.scratch_7/src/slides/sp22/34-Regular_Expressions.html?print-pdf#/12

Reqgular expressions in Python

file:///save/berkeley-cs61a/.scratch_7/src/slides/sp22/34-Regular_Expressions.html?print-pdf#/13

Support for regular expressions

Regular expressions are supported natively in many
languages and tools.

Languages: Perl, ECMAScript, Java, Python, ..

Tools: Excel/Google Spreadsheets, SQL, BigQuery, VSCode,
grep, ...

file:///save/berkeley-cs61a/.scratch_7/src/slides/sp22/34-Regular_Expressions.html?print-pdf#/14

Raw strings

In normal Python strings, a backslash indicates an escape
sequence, like \n for new line or \b for bell.

>>> print ("I have\na newline in me.")

I have
a newline in me

But backslash has a special meaning in regular
expressions. To make it easy to write regular expressions
in Python strings, use raw strings by prefixing the string

with an r:

pattern = r"\b[ab]+\b"

file:///save/berkeley-cs61a/.scratch_7/src/slides/sp22/34-Regular_Expressions.html?print-pdf#/15

The re module

The re module provides many helpful functions.

Function

Description

re.search(pattern, string)

returns a Match object representing the first
occurrence of pattern within string

re.fullmatch(pattern, string) returns a Match object, requiring that
pattern matches the entirety of string
re.match(pattern, string) returns a Match object, requiring that string

starts with a substring that matches pattern

re

.findall(pattern, string)

returns a list of strings representing all
matches of pattern within string, from left
to right

re

.sub(pattern,

repl, string)

substitutes all matches of pattern within
string with repl

https://docs.python.org/3/library/re.html
file:///save/berkeley-cs61a/.scratch_7/src/slides/sp22/34-Regular_Expressions.html?print-pdf#/16

Match objects

The functions re.search, re.match, and re.fullmatch all take a
string containing a regular expression and a string of text. They
return either a Match object or, if there is no match, None.

re.search requires that the pattern exists somewhere in the string:

import re u

re.search(r'-?\d+', '123 peeps') # <re.Match object>

re.search(r'-?\d+', 'So many peeps') # None

https://docs.python.org/3/library/re.html#match-objects
file:///save/berkeley-cs61a/.scratch_7/src/slides/sp22/34-Regular_Expressions.html?print-pdf#/17

Match objects

The functions re.search, re.match, and re.fullmatch all take a
string containing a regular expression and a string of text. They
return either a Match object or, if there is no match, None.

re.search requires that the pattern exists somewhere in the string:

import re u

re.search(r'-2\d+', '123 peeps') # <re.Match object>

re.search(r'-?\d+', 'So many peeps') # None

Match objects are treated as true values, so you can use the result
as a boolean:

bool (re.search(r'-2\d+', '123")) # True ﬂ
bool (re.search(r'-?\d+', 'So many peeps')) # False

https://docs.python.org/3/library/re.html#match-objects
file:///save/berkeley-cs61a/.scratch_7/src/slides/sp22/34-Regular_Expressions.html?print-pdf#/17

Inspecting a match

re.search returns a Match object representing the first
occurrence of pattern within string.

title = "I Know Why the Caged Bird Sings" m
re.search(r'Bird', title) #

Match objects carry information about what has been
matched. The Match.group() method allows you to
retrieve it.

X = "This string contains 35 characters." m
mat = re.search(r'\d+', x)
mat.group(0) # 35

file:///save/berkeley-cs61a/.scratch_7/src/slides/sp22/34-Regular_Expressions.html?print-pdf#/18

Match groups

If there are parentheses in a patterns, each of the
parenthesized groups will become groups in the match
object.

X:
mat

mat.
mat.
mat.
mat.

"There were 12 pence in a shilling and 20 shillings in a pound."
= re.search(r' (\d+) [a-z\s]+(\d+) ', x)

group (0)

group (1)

group (2)

groups ()

It's also common to use parentheses in combination with
quantifiers and other modifiers, however.

file:///save/berkeley-cs61a/.scratch_7/src/slides/sp22/34-Regular_Expressions.html?print-pdf#/19

Match groups

If there are parentheses in a patterns, each of the
parenthesized groups will become groups in the match
object.

X:
mat

mat.
mat.
mat.
mat.

"There were 12 pence in a shilling and 20 shillings in a pound."
= re.search(r' (\d+) [a-z\s]+(\d+) ', x)

group (
group (
group (

S

0)
1)
2)
groups ()

'12 pence in a shilling and 20

It's also common to use parentheses in combination with
quantifiers and other modifiers, however.

file:///save/berkeley-cs61a/.scratch_7/src/slides/sp22/34-Regular_Expressions.html?print-pdf#/19

Match groups

If there are parentheses in a patterns, each of the
parenthesized groups will become groups in the match

object.

x = "There were 12 pence in a shilling and 20 shillings in a pound."
mat = re.search(r' (\d+) [a-z\s]+(\d+) "', x)

mat.group (0) # '12 pence in a shilling and 20°

mat.group(l) # 12

mat.group (2)

mat.groups ()

It's also common to use parentheses in combination with
quantifiers and other modifiers, however.

file:///save/berkeley-cs61a/.scratch_7/src/slides/sp22/34-Regular_Expressions.html?print-pdf#/19

Match groups

If there are parentheses in a patterns, each of the
parenthesized groups will become groups in the match

object.

x = "There were 12 pence in a shilling and 20 shillings in a pound."
mat = re.search(r' (\d+) [a-z\s]+(\d+) "', x)

mat.group (0) # '12 pence in a shilling and 20°

mat.group(l) # 12

mat.group (2) # 20

mat.groups ()

It's also common to use parentheses in combination with
quantifiers and other modifiers, however.

file:///save/berkeley-cs61a/.scratch_7/src/slides/sp22/34-Regular_Expressions.html?print-pdf#/19

Match groups

If there are parentheses in a patterns, each of the
parenthesized groups will become groups in the match

object.

x = "There were 12 pence in a shilling and 20 shillings in a pound."
mat = re.search(r' (\d+) [a-z\s]+ (\d+)"', x)

mat.group (0) # '12 pence in a shilling and 20°

mat.group(l) # 12

mat.group (2) # 20

mat.groups () # (12, 20)

It's also common to use parentheses in combination with
quantifiers and other modifiers, however.

file:///save/berkeley-cs61a/.scratch_7/src/slides/sp22/34-Regular_Expressions.html?print-pdf#/19

Exercises

file:///save/berkeley-cs61a/.scratch_7/src/slides/sp22/34-Regular_Expressions.html?print-pdf#/20

Name That Pattern! #1

[A-Za-z] {3}

Fully matched by:]?

e What's a valid input?
e What's an invalid input?

file:///save/berkeley-cs61a/.scratch_7/src/slides/sp22/34-Regular_Expressions.html?print-pdf#/21

Name That Pattern! #1

[A-Za-z] {3}

Fully matched by:]?

e What's a valid input? AUS, aus
e What's an invalid input? australia, au

file:///save/berkeley-cs61a/.scratch_7/src/slides/sp22/34-Regular_Expressions.html?print-pdf#/21

Name That Pattern! #2

\d{4}-\d{2}-\d{2}

Fully matched by:]?

e What's a valid input?
e What's an invalid input?

file:///save/berkeley-cs61a/.scratch_7/src/slides/sp22/34-Regular_Expressions.html?print-pdf#/22

Name That Pattern! #2

\d{4}-\d{2}-\d{2}

Fully matched by:]?

e What's a valid input? 2020-03-13
e What's an invalid input? 2020/03/13, 03-13-2020

file:///save/berkeley-cs61a/.scratch_7/src/slides/sp22/34-Regular_Expressions.html?print-pdf#/22

Name That Pattern! #3

[a-2z0-9. %+-]+@[a-z0-9.-1+\.[a-z]{2,1}%

Fully matched by:]?

e What's a valid input?
e What's an invalid input?

file:///save/berkeley-cs61a/.scratch_7/src/slides/sp22/34-Regular_Expressions.html?print-pdf#/23

Name That Pattern! #3

[a-2z0-9. %+-]+@[a-z0-9.-1+\.[a-z]{2,1%

Fully matched by:]?

e What's a valid input? someone@someplace.org
e What's an invalid input? someone@mod%cloth.co

file:///save/berkeley-cs61a/.scratch_7/src/slides/sp22/34-Regular_Expressions.html?print-pdf#/23

Exercise: Stocks

Make a regular expression to match any tweet talking
about GME stock.

import re

def match gme (tweet) :

>>> match gme ('GME")

True

>>> match_gme ('yooo buy GME right now!"')
True

>>> match_gme ('#HUGME")

False

>>> match_gme (' #HUGMEHARDER')

False

nun

return bool (re.search (, tweet))

file:///save/berkeley-cs61a/.scratch_7/src/slides/sp22/34-Regular_Expressions.html?print-pdf#/24

Tips

e When learning, use sites like regexr.com
e Get used to referencing a regular expressions cheat
sheet

http://regexr.com/
file:///save/berkeley-cs61a/.scratch_7/src/slides/sp22/34-Regular_Expressions.html?print-pdf#/25

/A A word of caution A

Regular expressions can be very useful. However:

e Very long regular expressions can be difficult for other
programmers to read and modify.
See also: Write-only

e Since regular expressions are declarative, it's not always
clear how efficiently they'll be processed. Some
processing can be so time-consuming, it can take down
a server.

e Regular expressions can't parse everything! Don't write
an HTML parser with regular expressions.

https://blog.codinghorror.com/regex-use-vs-regex-abuse/
https://en.wikipedia.org/wiki/Write-only_language
https://owasp.org/www-community/attacks/Regular_expression_Denial_of_Service_-_ReDoS
https://stackoverflow.com/questions/1732348/regex-match-open-tags-except-xhtml-self-contained-tags
file:///save/berkeley-cs61a/.scratch_7/src/slides/sp22/34-Regular_Expressions.html?print-pdf#/26

