
Adding Custom Special Forms to Scheme

Macros
CS61A Spring 2022

MWF 2:00-3:00pm
cs61a.org

vanshaj [at] berkeley [dot] edu

Recall: Programs as Data

Scheme programs consist of expressions, which are either:

Primitive, such as 2 , 3.3 , #t , + , quotient

Combinations, such as (quotient 10 2) , (not #t)

Combinations are essentially lists, meaning we can write code that writes code.

scm> (list 'quotient 10 2)

(quotient 10 2)

scm> (eval (list 'quotient 10 2))

5

vanshaj [at] berkeley [dot] edu 2

Recall: Programs as Data

The following are all valid Scheme code, but how do we make it easier to turn this

into a template of sorts, in order to be able to reuse it?

scm> (list 'print 2)

(print 2)

scm> (list '+ 2 (list '- 3 2))

(+ 2 (- 3 2))

scm> (list 'if (list '> 3 2) ''greater ''smaller)

(if (> 3 2) (quote greater) (quote smaller))

vanshaj [at] berkeley [dot] edu 3

Recall: Quasiquotation

Very similar to regular quotation, but you can now unquote parts of an expression.

scm> `(a b)

(a b)

scm> (define b 4)

b

scm> `(a ,(+ b 1))

(a 5)

vanshaj [at] berkeley [dot] edu 4

Recall: Quasiquotation

We can use this to generate Scheme code in a templated form:

scm> (begin (define x 5) (define y 10))

scm> `(+ x y)

(+ x y)

scm> `(+ ,x ,y)

(+ 5 10)

scm> (eval `(if (< ,x ,y) 'success 'not-success))

success

vanshaj [at] berkeley [dot] edu 5

Generating Code

Remember make_adder ?

>>> def make_adder(n):

... return lambda d: d + n

...

>>> add_2 = make_adder(2)

Here, calling add_2 results in Python looking up n in the make_adder frame each

time.

vanshaj [at] berkeley [dot] edu 6

Generating Code

Remember make_adder ?

scm> (define (make-adder n) `(lambda (d) (+ d ,n)))

make-adder

scm> (eval (make-adder 2))

(lambda (d) (+ d 2))

Here, the result of make-adder doesn't contain any references to n , so we don't

need to refer to the make-adder frame again. in fact, make-adder only returns a

list, so it's not the parent of the lambda!

vanshaj [at] berkeley [dot] edu 7

Macros

In Python, we can't add new expressions or statement types. In Scheme, so far,

everything has either been a built-in special form or a user-defined procedure.

Macros allow us to write our own special forms!

A macro is an operation performed on code before evaluation. Macros exist in
many languages, but they're easiest to define correctly in a language like Lisp.

vanshaj [at] berkeley [dot] edu 8

Macros

The following code doesn't quite do what we want:

scm> (define (twice expr) (list 'begin expr expr))

twice

scm> (twice (print 2))

2

(begin undefined undefined)

vanshaj [at] berkeley [dot] edu 9

Rules of Evaluation

When evaluating procedures, we:

1. Evaluate the operator sub-expression

2. Evaluate all of the operands

3. Apply the procedure on the evaluated operands

scm> (define (twice expr) (list 'begin expr expr))

twice

scm> (twice (print 2))

2

(begin undefined undefined)

vanshaj [at] berkeley [dot] edu 10

Rules of Evaluation

When evaluating macros, we:

1. Evaluate the operator sub-expression

2. Call the macro on operands without evaluating the operands

3. Evaluate the expression returned by the macro

scm> (define-macro (twice expr) (list 'begin expr expr))

twice

scm> (twice (print 2))

2

2

vanshaj [at] berkeley [dot] edu 11

Rules of Evaluation

When evaluating macros, we:

1. Evaluate the operator sub-expression

2. Call the macro on operands without evaluating the operands

3. Evaluate the expression returned by the macro

How is this different from regular procedures? Your macros, not Scheme, define

when an operand should be evaluated. You can delay evaluation as much as you
want to -- custom special forms!

vanshaj [at] berkeley [dot] edu 12

Macros Without Macros

It's possible to replicate macro functionality without macros, but much less clean:

scm> (define (twice expr) (list 'begin expr expr))

twice

scm> (eval (twice '(print 2)))

2

2

vanshaj [at] berkeley [dot] edu 13

while Statements?

What is the sum of the squares of even numbers less than 10, starting at 2?

Scheme doesn't have while loops, so we need recursion. In Python:

def f(x, tot):

if x < 10:

return f(x + 2, tot + x * x)

return tot

f(2, 0)

vanshaj [at] berkeley [dot] edu 14

while Statements?

What is the sum of the squares of even numbers less than 10, starting at 2?

In Scheme:

(begin

 (define (f x tot)

 (if (< x 10)

 (f (+ x 2) (+ tot (* x x)))

 tot))

 (f 2 0))

vanshaj [at] berkeley [dot] edu 15

while Statements?

What is the sum of numbers with squares less than 50, starting at 1?

def f(x, tot):

if x * x < 50:

return f(x + 1, tot + x)

return tot

f(1, 0)

(begin

 (define (f x tot)

 (if (< (* x x) 50)

 (f (+ x 1) (+ tot x))

 tot))

 (f 1 0))

vanshaj [at] berkeley [dot] edu 16

while Statements?

Generically, what is the sum of expr of every nxt numbers where condn is true,

starting at init ?

In Python:

def f(x, tot):

if condn(x):

return f(nxt(x), tot + expr(x))

return tot

f(init, 0)

vanshaj [at] berkeley [dot] edu 17

while Statements?

Generically, what is the sum of expr of every nxt numbers where condn is true,

starting at init ?

In Scheme:

(begin

 (define (f x tot)

 (if (condn x)

 (f (nxt x) (+ tot (expr x)))

 tot))

 (f init 0))

vanshaj [at] berkeley [dot] edu 18

while Statements?

What is the sum of expr of every nxt numbers where condn is true, starting at

init ? Let's wrap this in a procedure called sum-while , which takes in the

appropriate parameters:

(define (sum-while init condn expr nxt)

 (begin

 (define (f x total)

 (if (condn x)

 (f (nxt x) (+ total (expr x)))

 total))

 (f init 0)))

vanshaj [at] berkeley [dot] edu 19

while Statements?

We might use the sum-while procedure as follows:

scm> (sum-while 2 (lambda (x) (< x 10))

...> (lambda (x) (* x x)) (lambda (x) (+ x 2)))

120

scm> (sum-while 1 (lambda (x) (< (* x x) 50))

...> (lambda (x) x) (lambda (x) (+ x 1)))

28

vanshaj [at] berkeley [dot] edu 20

while Statements?

What is the sum of expr of every nxt numbers where condn is true, starting at

init ? Let's use quasiquotation and unquotes to our advantage to make this less

repetitive:

(define (sum-while init condn expr nxt)

 `(begin

 (define (f x total)

 (if ,condn

 (f ,nxt (+ total ,expr))

 total))

 (f ,init 0)))

vanshaj [at] berkeley [dot] edu 21

while Statements?

We might use our new sum-while procedure as follows:

scm> (eval (sum-while 2 '(< x 10) '(* x x) '(+ x 2)))

120

scm> (eval (sum-while 1 '(< (* x x) 50) 'x '(+ x 1)))

28

Much cleaner already!

vanshaj [at] berkeley [dot] edu 22

while Statements?

What is the sum of expr of every nxt numbers where condn is true, starting at

init ? Here's the same code as before, but turned into a macro:

(define-macro (sum-while init condn expr nxt)

 `(begin

 (define (f x total)

 (if ,condn

 (f ,nxt (+ total ,expr))

 total))

 (f ,init 0)))

vanshaj [at] berkeley [dot] edu 23

while Statements?

We might use our shiny new sum-while macro as follows:

scm> (sum-while 2 (< x 10) (* x x) (+ x 2))

120

scm> (sum-while 1 (< (* x x) 50) x (+ x 1))

28

No eval , no quoting. Much nicer to read, isn't it?

vanshaj [at] berkeley [dot] edu 24

Checking Truthiness

Say we want to check if something's truthy or falsey:

scm> (define (check val) (if val 'passed 'failed))

check

scm> (define x -2)

x

scm> (check (> x 0))

failed

Can't really check what's failing, as the check procedure only receives the

evaluated result of val !

vanshaj [at] berkeley [dot] edu 25

Checking Truthiness

Say we want to check if something's truthy or falsey:

scm> (define (check expr) `(if ,expr 'passed '(failed: ,expr)))

check

scm> (define x -2)

x

scm> (eval (check '(> x 0)))

(failed: (> x 0))

vanshaj [at] berkeley [dot] edu 26

Checking Truthiness

Say we want to check if something's truthy or falsey:

scm> (define-macro (check expr) `(if ,expr 'passed '(failed: ,expr)))

check

scm> (define x -2)

x

scm> (check (> x 0))

(failed: (> x 0))

vanshaj [at] berkeley [dot] edu 27

def Statements

We want to write a macro that simulates Python's def statements in Scheme, in

order to say things like (def f(x y) (+ x y)) .

scm> (define-macro (def n args b) `(define ,n (lambda ,args ,b)))

def

scm> (def f(x y) (+ x y))

f

scm> (f 5 2)

7

vanshaj [at] berkeley [dot] edu 28

Thunk Macro

We want to write a macro that takes in some expr and turns it into a Thunk.

Remember that a Thunk is a no-argument lambda function that, when called,

evaluates and returns the expr it contains.

scm> (define-macro (thunkify expr) `(lambda () ,expr))

thunkify

scm> (define thunk (thunkify (+ 2 4)))

thunk

scm> (thunk)

6

vanshaj [at] berkeley [dot] edu 29

for Macro?

Scheme doesn't have for loops... yet. We want to be able to say things like:

scm> (for x '(2 3 4 5) (* x x))

(4 9 16 25)

First, let's see how to map items in a list vals using some function fn .

(define (map-fn fn vals)

 (if (null? vals) ()

 (cons (fn (car vals))

 (map-fn fn (cdr vals)))

))

vanshaj [at] berkeley [dot] edu 30

for Macro?

(define (map-fn fn vals)

 (if (null? vals) ()

 (cons (fn (car vals))

 (map-fn fn (cdr vals)))

))

We can now say things like (map-fn (lambda (x) (* x x)) '(2 3 4 5)) , but

that's more work than we should have to do. Why do we need to explicitly write

lambda ?

vanshaj [at] berkeley [dot] edu 31

for Macro?

We can now say things like (map-fn (lambda (x) (* x x)) '(2 3 4 5)) , but

that's more work than we should have to do. Why do we need to explicitly write

lambda ?

(define-macro (for var vals expr)

 `(map-fn (lambda (,var) ,expr) ,vals)

)

scm> (for x '(2 3 4 5) (* x x))

(4 9 16 25)

Success!

vanshaj [at] berkeley [dot] edu 32

Submit anonymous feedback at imvs.me/t/anon

Thanks for stopping by :)

vanshaj [at] berkeley [dot] edu

http://imvs.me/t/anon

