Scopes &
Tail Calls

Tips for navigating the slides:
  • Press O or Escape for overview mode.
  • Visit this link for a nice printable version
  • Press the copy icon on the upper right of code blocks to copy the code

Class outline:

  • Lexical vs. dynamic scopes
  • Recursion efficiency
  • Tail recursive functions
  • Tail call optimization

Scopes

Lexical scope

The standard way in which names are looked up in Scheme and Python.

Lexical (static) scope: The parent of a frame is the frame in which a procedure was defined


                    (define f (lambda (x) (+ x y)))
                    (define g (lambda (x y) (f (+ x x))))
                    (g 3 7)
                    
Global frame
f λ (x)
g λ (x, y)
f1: g [parent=Global]
x 3
y 7
f2: f [parent=Global]
x 6

What happens when we run this code?
Error: unknown identifier: y

Dynamic scope

An alternate approach to scoping supported by some languages.

Dynamic scope: The parent of a frame is the frame in which a procedure was called

Scheme includes the mu special form for dynamic scoping.


                    (define f (mu (x) (+ x y)))
                    (define g (lambda (x y) (f (+ x x))))
                    (g 3 7)
                    
Global frame
f μ (x)
g λ (x, y)
f1: g [parent=Global]
x 3
y 7
f2: f [parent=f1]
x 6

What happens when we run this code?
13

Recursion efficiency

Recursion and iteration in Python

Code Time Space

                                def factorial(n, k):
                                    while n > 0:
                                        n = n -1
                                        k = k * n
                                    return k
                                
Linear Constant

                                    def factorial(n, k):
                                        if n == 0:
                                            return k
                                        else:
                                            return factorial(n-1, k*n)
                                    
Linear Linear

Recursion frames in Python

In Python, recursive calls always create new frames.


                    def factorial(n, k):
                        if n == 0:
                            return k
                        else:
                            return factorial(n-1, k*n)
                    

Active frames over time:

fact(3, 1) fact(3, 1) fact(2, 3) fact(3, 1) fact(2, 3) fact(1, 6) fact(0, 6) 6 fact(3, 1) fact(2, 3) fact(1, 6) 6 fact(3, 1) fact(2, 3) 6 fact(3, 1) 6 Global Global Global Global Global Global Global Global Global Time

Recursion in Scheme

In Scheme interpreters, a tail-recursive function should only require a constant number of active frames.


                    (define (factorial n k)
                        (if (= n 0)
                            k
                            (factorial (- n 1) (* k n))))
                    

Active frames over time:

(fact 3 1) (fact 2 3) (fact 1 6) (fact 0 6) 6 Global Global Global Global Global Global Global Time

Tail recursive functions

Tail recursive functions

In a tail recursive function, every recursive call must be a tail call.


                    (define (factorial n k)
                        (if (= n 0)
                            k
                            (factorial (- n 1) (* k n))))
                    

A tail call is a call expression in a tail context:

  • The last body sub-expression in a lambda expression
  • Sub-expressions 2 & 3 in a tail context if expression
  • All non-predicate sub-expressions in a tail context cond
  • The last sub-expression in a tail context and, or, begin, or let

Example: Length of list


                    (define (length s)
                        (if (null? s) 0
                        (+ 1 (length (cdr s)) ) )
                    

A call expression is not a tail call if more computation is still required in the calling procedure.

But linear recursive procedures can often be re-written to use tail calls...


                    (define (length-tail s)
                        (define (length-iter s n)
                            (if (null? s) n
                            (length-iter (cdr s) (+ 1 n)) ) )
                        (length-iter s 0) )
                    

Is it tail recursive?


                    ;; Compute the length of s.
                    (define (length s)
                        (+ 1 (if (null? s)
                            -1
                            (length (cdr s))) ) )
                    

❌ No, because if is not in a tail context.


                    ;; Return whether s contains v.
                    (define (contains s v)
                        (if (null? s)
                        false
                        (if (= v (car s))
                            true
                            (contains (cdr s) v))))
                    

✅ Yes, because contains is in a tail context if.

Is it tail recursive? 2


                    ;; Return whether s has any repeated elements.
                    (define (has-repeat s)
                        (if (null? s)
                        false
                        (if (contains? (cdr s) (car s))
                            true
                            (has-repeat (cdr s))) ) )
                    

✅ Yes, because has-repeat is in a tail context.


                    ;; Return the nth Fibonacci number.
                    (define (fib n)
                        (define (fib-iter current k)
                            (if (= k n)
                                current
                                (fib-iter (+ current
                                            (fib (- k 1)))
                                          (+ k 1)) ) )
                        (if (= 1 n) 0 (fib-iter 1 2)))
                    

❌ No, because fib is not in a tail context.

Example: Reduce


                    (reduce * '(3 4 5) 2) 120
                    (reduce (lambda (x y) (cons y x)) '(3 4 5) '(2)) (5 4 3 2)
                    

                    (define (reduce procedure s start)
                        (if (null? s) start
                            (reduce procedure
                                (cdr s)
                                (procedure start (car s)) ) ) )
                    

Is it tail recursive?
✅ Yes, because reduce is in a tail context.

However, if procedure is not tail recursive, then this may still require more than constant space for execution.

Example: Map


                    (map (lambda (x) (- 5 x)) (list 1 2))
                    

                    (define (map procedure s)
                        (if (null? s)
                            nil
                            (cons (procedure (car s))
                                (map procedure (cdr s))) ) )
                    

Is it tail recursive?
❌ No, because map is not in a tail context.

Example: Map (Tail recursive)


                    (define (map procedure s)
                        (define (map-reverse s m)
                        (if (null? s)
                            m
                            (map-reverse (cdr s) (cons (procedure (car s)) m))))
                        (reverse (map-reverse s nil)))

                    (define (reverse s)
                        (define (reverse-iter s r)
                        (if (null? s)
                            r
                            (reverse-iter (cdr s) (cons (car s) r))))
                        (reverse-iter s nil))

                    (map (lambda (x) (- 5 x)) (list 1 2))
                    

Tail call optimization
with trampolining

What the thunk?

Thunk: An expression wrapped in an argument-less function.

Making thunks in Python:


                    thunk1 = lambda: 2 * (3 + 4)
                    thunk2 = lambda: add(2, 4)
                    

Calling a thunk later:


                    thunk1()
                    thunk2()
                    

Trampolining

Trampoline: A loop that iteratively invokes thunk-returning functions.


                    def trampoline(f, *args):
                        v = f(*args)
                        while callable(v):
                            v = v()
                        return v
                    

The function needs to be thunk-returning! One possibility:


                    def factorial_thunked(n, k):
                        if n == 0:
                            return k
                        else:
                            return lambda: factorial_thunked(n - 1, k * n)
                    

                        trampoline(factorial_thunked, 3, 1)
                        

Demo: Trampolined interpreter

The Scheme project EC is to implement trampolining. Let's see how it improves the ability to call tail recursive functions...