Scheme Lists

file:///save/berkeley-cs61a/.scratch_1/src/slides/sp22/26-Scheme_Lists.html?print-pdf#/
file:///save/berkeley-cs61a/.scratch_1/src/slides/sp22/26-Scheme_Lists.html?print-pdf#

Class outline:

e Lists

e Quotation

e List procedures
e Exercises

file:///save/berkeley-cs61a/.scratch_1/src/slides/sp22/26-Scheme_Lists.html?print-pdf#/1

Scheme lists

file:///save/berkeley-cs61a/.scratch_1/src/slides/sp22/26-Scheme_Lists.html?print-pdf#/2

Constructing a list

Scheme lists are linked lists.

—> 1 » 2 | ()

Python (with our Link class:)

file:///save/berkeley-cs61a/.scratch_1/src/slides/sp22/26-Scheme_Lists.html?print-pdf#/3

Constructing a list

Scheme lists are linked lists.

—> 1 » 2 | ()

Python (with our Link class:)

Link (1, Link(2))

file:///save/berkeley-cs61a/.scratch_1/src/slides/sp22/26-Scheme_Lists.html?print-pdf#/3

Constructing a list

Scheme lists are linked lists.

Python (with our Link class:)

Link (1, Link(2)) 15

Scheme (with the cons form:)

(cons 1 (cons 2 nil)) L.
nil is the empty list.

Lists are written in parentheses with space-separated elements:

(cons 1 (cons 2 (cons 3 (cons 4 nil)))) ; (1 2 3 4)

file:///save/berkeley-cs61a/.scratch_1/src/slides/sp22/26-Scheme_Lists.html?print-pdf#/3

Accessing list elements

—» 1 » 2 | ()

Python access:

file:///save/berkeley-cs61a/.scratch_1/src/slides/sp22/26-Scheme_Lists.html?print-pdf#/4

Accessing list elements

Python access:

lst = Link(l, Link(2)) u
lst.first # 1
lst.rest # Link(2)

file:///save/berkeley-cs61a/.scratch_1/src/slides/sp22/26-Scheme_Lists.html?print-pdf#/4

Accessing list elements

Python access:

lst = Link (1, Link(2))
lst.first # 1
lst.rest # Link (2)

Scheme access:

(define 1lst (cons 1 (cons 2 nil)))
(car 1lst) ; 1
(cdr 1lst) ; (2)

e car: Procedure that returns the first element of a list

e cdr: Procedure that returns the rest of the list

Remember: "cdr" = "Cee Da Rest"

file:///save/berkeley-cs61a/.scratch_1/src/slides/sp22/26-Scheme_Lists.html?print-pdf#/4

The list procedure

The built-in list procedure takes in an arbitrary number
of arguments and constructs a list with the values of
these arguments:

(list 1 2 3) ; (1 2 3)
(list 1 (list 2 3) 4)
(list (cons 1 (cons 2 nil)) 3 4)

Procedure reference: list

https://cs61a.org/articles/scheme-builtins/#list
file:///save/berkeley-cs61a/.scratch_1/src/slides/sp22/26-Scheme_Lists.html?print-pdf#/5

The list procedure

The built-in list procedure takes in an arbitrary number
of arguments and constructs a list with the values of
these arguments:

(list 1 2 3) ;o (1 2 3) u

(list 1 (list 2 3) 4) ; (1 (2 3) 4)
(list (cons 1 (cons 2 nil)) 3 4)

Procedure reference: list

https://cs61a.org/articles/scheme-builtins/#list
file:///save/berkeley-cs61a/.scratch_1/src/slides/sp22/26-Scheme_Lists.html?print-pdf#/5

The list procedure

The built-in list procedure takes in an arbitrary number
of arguments and constructs a list with the values of
these arguments:

(list 1 2 3) ; (1 2 3)
(list 1 (list 2 3) 4) ; (1 (2 3) 4)
(list (cons 1 (cons 2 nil)) 3 4) ; ((1L 2) 3 4)

Procedure reference: list

https://cs61a.org/articles/scheme-builtins/#list
file:///save/berkeley-cs61a/.scratch_1/src/slides/sp22/26-Scheme_Lists.html?print-pdf#/5

Quotation

file:///save/berkeley-cs61a/.scratch_1/src/slides/sp22/26-Scheme_Lists.html?print-pdf#/6

Quoting symbols

Symbols typically refer to values:

(define a 1)
(define b 2)
(list a b)

Quotation is used to refer to symbols directly:

(list 'a 'b)
(list 'a Db)

The ' is shorthand for the quote form:

(list (quote a) (quote b))

file:///save/berkeley-cs61a/.scratch_1/src/slides/sp22/26-Scheme_Lists.html?print-pdf#/7

Quoting symbols

Symbols typically refer to values:

(define a 1)
(define b 2)
(list a b) ;o (1 2)

Quotation is used to refer to symbols directly:

(list 'a 'b)
(list 'a Db)

The ' is shorthand for the quote form:

(list (quote a) (quote b))

file:///save/berkeley-cs61a/.scratch_1/src/slides/sp22/26-Scheme_Lists.html?print-pdf#/7

Quoting symbols

Symbols typically refer to values:

(define a 1)
(define b 2)
(list a b) ;o (1 2)

Quotation is used to refer to symbols directly:

(list 'a 'b) ; (a b)
(list 'a b)

The ' is shorthand for the quote form:

(list (quote a) (quote b))

file:///save/berkeley-cs61a/.scratch_1/src/slides/sp22/26-Scheme_Lists.html?print-pdf#/7

Quoting symbols

Symbols typically refer to values:

(define a 1)
(define b 2)
(list a b) ;o (1 2)

Quotation is used to refer to symbols directly:

(list 'a 'b) ; (a b)
(list 'a b) ;o (a 2)

The ' is shorthand for the quote form:

(list (gquote a) (quote b))

file:///save/berkeley-cs61a/.scratch_1/src/slides/sp22/26-Scheme_Lists.html?print-pdf#/7

Quoting symbols

Symbols typically refer to values:

(define a 1)
(define b 2)
(list a b) ;o (1 2)

Quotation is used to refer to symbols directly:

(list 'a 'b) ; (a b)
(list 'a b) ;o (a 2)

The ' is shorthand for the quote form:

(list (quote a) (quote b)) ; (a b)

file:///save/berkeley-cs61a/.scratch_1/src/slides/sp22/26-Scheme_Lists.html?print-pdf#/7

Quoting lists

Combinations can be quoted to form lists.

'(a b ¢) ; (a b c)
(car '"(a b c))
(cdr '"(a b c¢))

Remember: quoted symbols are not evaluated.

file:///save/berkeley-cs61a/.scratch_1/src/slides/sp22/26-Scheme_Lists.html?print-pdf#/8

Quoting lists

Combinations can be quoted to form lists.

'(a b ¢) ; (a b c)
(car '(a b ¢)) ; a
(cdr '"(a b c¢))

Remember: quoted symbols are not evaluated.

file:///save/berkeley-cs61a/.scratch_1/src/slides/sp22/26-Scheme_Lists.html?print-pdf#/8

Quoting lists

Combinations can be quoted to form lists.

'(a b ¢) ; (a b c)
(car '(a b ¢)) ; a
(cdr '"(a b c¢)) ; (b c)

Remember: quoted symbols are not evaluated.

file:///save/berkeley-cs61a/.scratch_1/src/slides/sp22/26-Scheme_Lists.html?print-pdf#/8

List procedures

file:///save/berkeley-cs61a/.scratch_1/src/slides/sp22/26-Scheme_Lists.html?print-pdf#/9

length

Length returns the length of a list.

length ' (1 2))
length '())
length nil)
length 123)

—_~ o~ o~ o~

Scheme built-in procedures: List manipulation

https://cs61a.org/articles/scheme-builtins/#pair-and-list-manipulation
file:///save/berkeley-cs61a/.scratch_1/src/slides/sp22/26-Scheme_Lists.html?print-pdf#/10

length

Length returns the length of a list.

length ' (1 2)) ;2
length '())
length nil)
length 123)

—_~ o~ o~ o~

Scheme built-in procedures: List manipulation

https://cs61a.org/articles/scheme-builtins/#pair-and-list-manipulation
file:///save/berkeley-cs61a/.scratch_1/src/slides/sp22/26-Scheme_Lists.html?print-pdf#/10

length

Length returns the length of a list.

(length ' (1 2)) R 2
(length ' ()) 7 O
(length nil)
(length 123)

Scheme built-in procedures: List manipulation

https://cs61a.org/articles/scheme-builtins/#pair-and-list-manipulation
file:///save/berkeley-cs61a/.scratch_1/src/slides/sp22/26-Scheme_Lists.html?print-pdf#/10

length

Length returns the length of a list.

(length ' (1 2)) R 2
(length '()) ; 0
(length nil) ; O
(length 123)

Scheme built-in procedures: List manipulation

https://cs61a.org/articles/scheme-builtins/#pair-and-list-manipulation
file:///save/berkeley-cs61a/.scratch_1/src/slides/sp22/26-Scheme_Lists.html?print-pdf#/10

length

Length returns the length of a list.

(length ' (1 2)) R 2
(length '()) ; 0
(length nil) ; O
(length 123) ; Error!

Scheme built-in procedures: List manipulation

https://cs61a.org/articles/scheme-builtins/#pair-and-list-manipulation
file:///save/berkeley-cs61a/.scratch_1/src/slides/sp22/26-Scheme_Lists.html?print-pdf#/10

null?

null? returns whether a list is empty or not.

(null? '())
(null? nil)
(null? ' (1 2))
(null? 123)

Scheme built-in procedures: Type checking

https://cs61a.org/articles/scheme-builtins/#type-checking
file:///save/berkeley-cs61a/.scratch_1/src/slides/sp22/26-Scheme_Lists.html?print-pdf#/11

null?

null? returns whether a list is empty or not.

(null? '()) ; HE
(null? nil)

(null? '(1 2))

(nullz? 123)

Scheme built-in procedures: Type checking

https://cs61a.org/articles/scheme-builtins/#type-checking
file:///save/berkeley-cs61a/.scratch_1/src/slides/sp22/26-Scheme_Lists.html?print-pdf#/11

null?

null? returns whether a list is empty or not.

(null? '()) ; HE
(null? nil) ; Bt
(null? ' (1 2))

(null? 123)

Scheme built-in procedures: Type checking

https://cs61a.org/articles/scheme-builtins/#type-checking
file:///save/berkeley-cs61a/.scratch_1/src/slides/sp22/26-Scheme_Lists.html?print-pdf#/11

null?

null? returns whether a list is empty or not.

(null? '()) ; HE
(null? nil) ; Bt
(null? ' (1 2)) ; HE
(null? 123)

Scheme built-in procedures: Type checking

https://cs61a.org/articles/scheme-builtins/#type-checking
file:///save/berkeley-cs61a/.scratch_1/src/slides/sp22/26-Scheme_Lists.html?print-pdf#/11

null?

null? returns whether a list is empty or not.

(null? '()) ; HE
(null? nil) ; Bt
(null? ' (1 2)) ; HE
(null? 123) ; #E

Scheme built-in procedures: Type checking

https://cs61a.org/articles/scheme-builtins/#type-checking
file:///save/berkeley-cs61a/.scratch_1/src/slides/sp22/26-Scheme_Lists.html?print-pdf#/11

append

append returns the result of appending the items of all
provided lists into a single list in the order provided.

(append ' (1 2) '(3 4))
(append ' (1 2) '(3 4) '(5 6))

Scheme built-in procedures: List manipulation

https://cs61a.org/articles/scheme-builtins/#pair-and-list-manipulation
file:///save/berkeley-cs61a/.scratch_1/src/slides/sp22/26-Scheme_Lists.html?print-pdf#/12

append

append returns the result of appending the items of all
provided lists into a single list in the order provided.

(append '(1 2) '(3 4)) ; (12 3 4)
(append '(1 2) '(3 4) '(5 6))

Scheme built-in procedures: List manipulation

https://cs61a.org/articles/scheme-builtins/#pair-and-list-manipulation
file:///save/berkeley-cs61a/.scratch_1/src/slides/sp22/26-Scheme_Lists.html?print-pdf#/12

append

append returns the result of appending the items of all
provided lists into a single list in the order provided.

(append '(1 2) '(3 4)) ; (1 2 3 4)
(append '(1 2) '(3 4) '(56)) ; (1L 23 4 5 6)

Scheme built-in procedures: List manipulation

https://cs61a.org/articles/scheme-builtins/#pair-and-list-manipulation
file:///save/berkeley-cs61a/.scratch_1/src/slides/sp22/26-Scheme_Lists.html?print-pdf#/12

map

(map <proc> <lst>) returns a new list created by
applying proc to each item in st

(map abs '"(-1 -2 3 4))
(map - '(1 2))

Scheme built-in procedures: List manipulation

https://cs61a.org/articles/scheme-builtins/#pair-and-list-manipulation
file:///save/berkeley-cs61a/.scratch_1/src/slides/sp22/26-Scheme_Lists.html?print-pdf#/13

map

(map <proc> <lst>) returns a new list created by
applying proc to each item in st

(map abs '(-1 -2 3 4)) ; (12 3 4)
(map - '(1 2))

Scheme built-in procedures: List manipulation

https://cs61a.org/articles/scheme-builtins/#pair-and-list-manipulation
file:///save/berkeley-cs61a/.scratch_1/src/slides/sp22/26-Scheme_Lists.html?print-pdf#/13

map

(map <proc> <lst>) returns a new list created by
applying proc to each item in st

(map abs '(-1 -2 3 4)) ; (12 3 4)
(map - '(1 2)) ;o (-1 -2)

Scheme built-in procedures: List manipulation

https://cs61a.org/articles/scheme-builtins/#pair-and-list-manipulation
file:///save/berkeley-cs61a/.scratch_1/src/slides/sp22/26-Scheme_Lists.html?print-pdf#/13

filter

(filter <pred> <lst>) returns a new list consisting only
of elements of 1st for which pred is true.

(filter even? '(0 1 2 3 4 5)) u
(filter odd? '(0 1 2 3 4 5))

Scheme built-in procedures: List manipulation

https://cs61a.org/articles/scheme-builtins/#pair-and-list-manipulation
file:///save/berkeley-cs61a/.scratch_1/src/slides/sp22/26-Scheme_Lists.html?print-pdf#/14

filter

(filter <pred> <lst>) returns a new list consisting only
of elements of 1st for which pred is true.

(filter even? '(0 1 2 3 4 5)) : (0 2 4) u
(filter odd? '(0 1 2 3 4 5))

Scheme built-in procedures: List manipulation

https://cs61a.org/articles/scheme-builtins/#pair-and-list-manipulation
file:///save/berkeley-cs61a/.scratch_1/src/slides/sp22/26-Scheme_Lists.html?print-pdf#/14

filter

(filter <pred> <lst>) returns a new list consisting only
of elements of 1st for which pred is true.

(filter even? '(0 1 2 3 4 5)) : (0 2 4) u
(filter odd? '(0 1 2 3 4 5)) ; (1 3 5)

Scheme built-in procedures: List manipulation

https://cs61a.org/articles/scheme-builtins/#pair-and-list-manipulation
file:///save/berkeley-cs61a/.scratch_1/src/slides/sp22/26-Scheme_Lists.html?print-pdf#/14

reduce

(reduce <combiner> <lst>) returns the result of
sequentially combining each element in 1st using
combiner (a two-arg procedure).

(reduce + '(1 2 3 4 5))
(reduce expt '(1 2 3 4 5))
(reduce expt '(2 3 4 5))

Scheme built-in procedures: List manipulation

https://cs61a.org/articles/scheme-builtins/#pair-and-list-manipulation
file:///save/berkeley-cs61a/.scratch_1/src/slides/sp22/26-Scheme_Lists.html?print-pdf#/15

reduce

(reduce <combiner> <lst>) returns the result of
sequentially combining each element in 1st using
combiner (a two-arg procedure).

(reduce + '"(1 2 3 4 5)) ; (15)
(reduce expt '(1 2 3 4 5))
(reduce expt '(2 3 4 5))

Scheme built-in procedures: List manipulation

https://cs61a.org/articles/scheme-builtins/#pair-and-list-manipulation
file:///save/berkeley-cs61a/.scratch_1/src/slides/sp22/26-Scheme_Lists.html?print-pdf#/15

reduce

(reduce <combiner> <lst>) returns the result of
sequentially combining each element in 1st using
combiner (a two-arg procedure).

(reduce + '(1 2 3 4 5)) ; (15)
(reduce expt '(1 2 3 4 5)) ;0 (1)
(reduce expt '(2 3 4 5))

Scheme built-in procedures: List manipulation

https://cs61a.org/articles/scheme-builtins/#pair-and-list-manipulation
file:///save/berkeley-cs61a/.scratch_1/src/slides/sp22/26-Scheme_Lists.html?print-pdf#/15

reduce

(reduce <combiner> <lst>) returns the result of
sequentially combining each element in 1st using
combiner (a two-arg procedure).

(reduce + '(1 2 3 4 5)) ;o (15)
(reduce expt '(1 2 3 4 5)) ;o (1)
(reduce expt '(2 3 4 5)) ; (1152921504606846976)

Scheme built-in procedures: List manipulation

https://cs61a.org/articles/scheme-builtins/#pair-and-list-manipulation
file:///save/berkeley-cs61a/.scratch_1/src/slides/sp22/26-Scheme_Lists.html?print-pdf#/15

List equality

(define listl '(a b c¢))
(define 1list2 '(a b ¢))

For lists, (eq? a b) returns whether a and b are the
same list in memory.

(eg? listl 1list2)

Scheme built-in procedures: Boolean operations

https://cs61a.org/articles/scheme-builtins/#boolean-operations
file:///save/berkeley-cs61a/.scratch_1/src/slides/sp22/26-Scheme_Lists.html?print-pdf#/16

List equality

(define listl '(a b c¢))
(define 1list2 '(a b ¢))

For lists, (eq? a b) returns whether a and b are the
same list in memory.

(eg? listl 1list2) #f

Scheme built-in procedures: Boolean operations

https://cs61a.org/articles/scheme-builtins/#boolean-operations
file:///save/berkeley-cs61a/.scratch_1/src/slides/sp22/26-Scheme_Lists.html?print-pdf#/16

List equality
(define listl '(a b ¢))

(define list2 '(a b c))

For lists, (eq? a b) returns whether a and b are the
same list in memory.

(eq? listl list2) #f

While (equal? a b) returns whether a and and b are
equivalent. Two lists are considered equivalent if (car a)
is equivalent to (car b) and (cdr a) is equivalent to
(cdr b).

(equal? listl 1list2)

Scheme built-in procedures: Boolean operations

https://cs61a.org/articles/scheme-builtins/#boolean-operations
file:///save/berkeley-cs61a/.scratch_1/src/slides/sp22/26-Scheme_Lists.html?print-pdf#/16

List equality
(define listl '(a b c¢))

(define list2 '(a b c))

For lists, (eq? a b) returns whether a and b are the
same list in memory.

(eq? listl list2) #f

While (equal? a b) returns whether a and and b are
equivalent. Two lists are considered equivalent if (car a)
is equivalent to (car b) and (cdr a) is equivalent to
(cdr b).

(equal? listl list2) #t

Scheme built-in procedures: Boolean operations

https://cs61a.org/articles/scheme-builtins/#boolean-operations
file:///save/berkeley-cs61a/.scratch_1/src/slides/sp22/26-Scheme_Lists.html?print-pdf#/16

Exercises

file:///save/berkeley-cs61a/.scratch_1/src/slides/sp22/26-Scheme_Lists.html?print-pdf#/17

North of equator?

Implement (north of eq point), a
procedure that takes point, a
two-element list with a latitude
and longitude, and returns whether .
point is north of the Equator.

(define (north_of_eqg point)

(expect (north of _eqg '(67 10)) #t)
(expect (north of eq '(67 -10)) #t)
(expect (north of eqg '(-67 10)) #f)
(((

expect (north_of _eq '

file:///save/berkeley-cs61a/.scratch_1/src/slides/sp22/26-Scheme_Lists.html?print-pdf#/18

North of equator? (Solution)

Implement (north of eq point), a
procedure that takes point, a
two-element list with a latitude
and longitude, and returns whether .
point is north of the Equator.

(define (north_of_eqg point)
(> (car point) 0)

)

(expect (north of _eqg '(67 10)) #t)
(expect (north of eq '(67 -10)) #t)
(expect (north of eqg '(-67 10)) #f)
(((

expect (north_of _eq '

file:///save/berkeley-cs61a/.scratch_1/src/slides/sp22/26-Scheme_Lists.html?print-pdf#/19

All north?

Implement (all north of eq points), a procedure that

takes points, a list of two-element lists, and returns

whether all the points are north of the equator.

(define

(all_north of eqg points)

(all_north_of_eq
(all _north of eqg
(all_north_of_ eqg
(all_north_of_eq

(
(
(
(

(67 10)

(_

67

10)

(67 10)

))

#t)

(14 43)
(14 43)
(14 43)

(37
(37
(-37

-122)))
-122)))
-122)))

#t)
#f)
#f)

file:///save/berkeley-cs61a/.scratch_1/src/slides/sp22/26-Scheme_Lists.html?print-pdf#/20

All north? (Solution 1)

Implement (all north of eq points), a procedure that
takes points, a list of two-element lists, and returns
whether all the points are north of the equator.

(define (all _north of eqg points) u
(= (length (filter north of_eq points)) (length points))

)

(expect (all_north of_eqg '((67 10) (14 43) (37 -122))) #t)

(expect (all_north of_eq '((-67 10) (14 43) (37 -122))) #f)

(expect (all_north of eq '((67 10) (14 43) (-37 -122))) #f)

(expect (all_north of eqg '()) #t)

file:///save/berkeley-cs61a/.scratch_1/src/slides/sp22/26-Scheme_Lists.html?print-pdf#/21

All north? (Solution 2)

Implement (all north of eq points), a procedure that
takes points, a list of two-element lists, and returns
whether all the points are north of the equator.

(define (all _north of eqg points) u
(cond
((null? points) #t)
((north_of_eqg (car points)) (all_north_of_eqg (cdr points),
(else #f)

(expect (all _north of eq '((67 10) (14 43) (37 -122))) #t)
(expect (all_north of_eq '((-67 10) (14 43) (37 -122))) #f)
(expect (all_north of_eq '((67 10) (14 43) (-37 -122))) #f)
(expect (all_north of eqg '()) #t)

file:///save/berkeley-cs61a/.scratch_1/src/slides/sp22/26-Scheme_Lists.html?print-pdf#/22

Countdown list

Implement countdown list, a procedure which takes a
number n and returns a list with all the numbers from n
down to 1.

(define (countdown_ list n) u
)

(expect (countdown_list 3) (3 2 1))

(expect (countdown list 1) (1))

file:///save/berkeley-cs61a/.scratch_1/src/slides/sp22/26-Scheme_Lists.html?print-pdf#/23

Countdown list (Solution)

Implement countdown list, a procedure which takes a
number n and returns a list with all the numbers from n
down to 1.

(define (countdown_list n) u
(1f
(= n 0) nil
(cons n (countdown_1list (- n 1)))
)
)
(expect (countdown_list 3) (3 2 1))
(expect (countdown_list 1) (1))

file:///save/berkeley-cs61a/.scratch_1/src/slides/sp22/26-Scheme_Lists.html?print-pdf#/24

Countup list

Implement countup list, a procedure which takes a
number n and returns a list with all the numbers from 1
up to (and including) n.

(define (countup_list n) u

(expect (countup_list 3) (1 2 3))
(expect (countup_ list 1) (1))

file:///save/berkeley-cs61a/.scratch_1/src/slides/sp22/26-Scheme_Lists.html?print-pdf#/25

Countup list (Solution)

Implement countup list, a procedure which takes a
number n and returns a list with all the numbers from 1
up to (and including) n.

(define (countup_list n) u
(1f
(= n 0) nil
(append (countup_list (- n 1)) (cons n nil))

(expect (countup_list 3) (1 2 3))
(expect (countup_1list 1) (1))

file:///save/berkeley-cs61a/.scratch_1/src/slides/sp22/26-Scheme_Lists.html?print-pdf#/26

