
Working with Persistent, Related Objects

Object-Relational Mappings (ORMs)
CS61A Spring 2022

MWF 2:00-3:00pm
cs61a.org

vanshaj [at] berkeley [dot] edu

Recall: Data

So far, we've learned how to represent data in our programs as variables:

name = "fido"

age = 2

fav_food = "homework"

vanshaj [at] berkeley [dot] edu 2

Recall: Objects

We've also learned how to wrap this data in meaningful structures, like classes:

class Animal:

def __init__(self, name, age, fav_food):

 self.name = name

 self.age = age

 self.fav_food = fav_food

 self.shelter = None # we'll come back to this on the next slide

fido = Animal("fido", 2, "homework")

luna = Animal("luna", 4, "yarn")

vanshaj [at] berkeley [dot] edu 3

Recall: Composition

We've even learned how to make objects interact with each other:

class Shelter:

def __init__(self, name, address, animals):

 self.name = name

 self.address = address

 self.animals = animals

for animal in animals:

 animal.shelter = self

berkeley = Shelter("Berkeley Shelter", "UC Berkeley", [fido])

vanshaj [at] berkeley [dot] edu 4

What are we trying to represent?

Relational data, where each animal is associated with a shelter (and each shelter is

associated with some number of animals). We store such data in tables (like you

would on paper), and these tables together form a database.

A database is a collection of related data, usually organized in tables, that can be
accessed in various ways. The database is generally stored on a computer as a (set

of) �le(s).

vanshaj [at] berkeley [dot] edu 5

Tables

Animals:

Name Age Favorite Food Shelter

Fido 2 Homework Berkeley Shelter

Luna 4 Yarn

A table is a set of data organized into vertical columns (identi�able by name). Each

table is usually accompanied by metadata that imposes constraints and

relationships on the columns in that table.

vanshaj [at] berkeley [dot] edu 6

Databases

Animals:

Name Age Favorite Food Shelter

Fido 2 Homework Berkeley Shelter

Luna 4 Yarn

Shelters:

Name Address Animals

Berkeley Shelter UC Berkeley [Fido]

vanshaj [at] berkeley [dot] edu 7

Notable Properties
An Animal may or may not be living in a Shelter , stored in animal.shelter .

A Shelter may have any number of Animal s, stored in shelter.animals .

Whenever we change the shelter of an animal , we need to remove it from

the old shelter.animals and add it to the new shelter.animals .

Whenever we remove an animal from a shelter 's animals list, we need to

clear the animal's shelter attribute.

Broadly: these tables are related, and many actions need to occur simultaneously

to keep them in sync.

vanshaj [at] berkeley [dot] edu 8

Many-to-One Relationships

What we've just described is a "many-to-one" relationship: many animals can

correspond to one shelter. The converse of this is a "one-to-many" relationship:

one shelter can correspond to many animals.

How do we decide which one this is? Well, it's a matter of perspective: Does a
shelter have animals? Or do animals each have a shelter?

In our case, it should really be that each animal has a shelter (i.e. lives in a shelter),

so we go with many-to-one.

vanshaj [at] berkeley [dot] edu 9

Recall: Animal s and Shelter s

class Animal:

def __init__(self, name, age, fav_food):

 ...

class Shelter:

def __init__(self, name, address, animals):

 ...

fido = Animal("fido", 2, "homework")

luna = Animal("luna", 4, "yarn")

berkeley = Shelter("Berkeley Shelter", "UC Berkeley", [fido])

vanshaj [at] berkeley [dot] edu 10

Drawbacks of our Model

How do we maintain a many-to-one relationship? How do we store this across

sessions? How do we �lter all of our data?

We have to write our own system for saving this information and restoring it if

we want it to persist across sessions.

We have to write our own syncing system to keep these objects in sync.

We have to write list comprehensions ourselves if we want to �lter/query this
data.

vanshaj [at] berkeley [dot] edu 11

Storage

So far, all the programs we've created have saved state on memory, meaning that

our data only lasts until we exit the interpreter. Take your Cats high scores, for

example -- those don't persist locally, because once you exit the program, your

computer gets rid of the information.

To store things long-term, you need to put them in �les, such as databases. To

share things, you need to put them in some central �le that multiple people can

access, which is also something that databases allow us to do.

vanshaj [at] berkeley [dot] edu 12

Alternative: ORMs

ORMs (object-relational mappings) wrap databases in a structure that's relevant

to the programming language you're working in (for us, that's Python). They let

you represent data as related classes, and they handle all the dirty work for you!

In Python, the sqlalchemy library provides a set of utilities for working with
ORMs.

$ pip3 install sqlalchemy

$ python3

>>> import sqlalchemy

>>> sqlalchemy.__version__

'1.4.31'
vanshaj [at] berkeley [dot] edu 13

SQLAlchemy: The Animal Model

shelter_system.py

class Animal(Base):

 __tablename__ = "animals"

 name = Column(String, primary_key=True)

 age = Column(Integer)

 fav_food = Column(String)

 shelter_name = Column(String, ForeignKey("shelters.name"))

 shelter = relationship("Shelter", back_populates="animals")

vanshaj [at] berkeley [dot] edu 14

SQLAlchemy: The Shelter Model

shelter_system.py

class Shelter(Base):

 __tablename__ = "shelters"

 name = Column(String, primary_key=True)

 address = Column(String)

 animals = relationship("Animal", back_populates="shelter")

vanshaj [at] berkeley [dot] edu 15

SQLAlchemy Round 1

The following slides will all occur in the same Python interpreter session. This

means that, once de�ned, a variable will continue to exist until we exit the

interpreter.

To launch this interpreter with the relevant �le loaded in:

$ python3 -i shelter_system.py

vanshaj [at] berkeley [dot] edu 16

SQLAlchemy 1: Creating Instances

>>> fido = Animal(name="fido", age=2, fav_food="homework")

>>> luna = Animal(name="luna", age=4, fav_food="yarn")

>>> fido

Animal(name='fido', age=2, fav_food='homework')

>>> luna

Animal(name='luna', age=4, fav_food='yarn')

>>> fido.shelter

>>> berkeley = Shelter(name="Berkeley Shelter", address="UC Berkeley")

>>> berkeley

Shelter(name='Berkeley Shelter', address='UC Berkeley')

>>> berkeley.animals

[]

vanshaj [at] berkeley [dot] edu 17

SQLAlchemy 1: Making our Instances Interact

>>> berkeley.animals.append(fido)

>>> berkeley.animals

[Animal(name='fido', age=2, fav_food='homework')]

>>> fido.shelter

Shelter(name='Berkeley Shelter', address='UC Berkeley')

>>> luna.shelter = berkeley

>>> berkeley.animals

[Animal(name='fido', age=2, fav_food='homework'),

 Animal(name='luna', age=4, fav_food='yarn')]

vanshaj [at] berkeley [dot] edu 18

SQLAlchemy 1: Tracking our Objects

>>> session.add_all([fido, luna, berkeley])

vanshaj [at] berkeley [dot] edu 19

SQLAlchemy 1: Querying our Data

>>> session.query(Animal).filter(Animal.shelter == berkeley).all()

[Animal(name='fido', age=2, fav_food='homework'),

 Animal(name='luna', age=4, fav_food='yarn')]

>>> session.query(Animal).filter(Animal.shelter == berkeley,

... Animal.age > 3).all()

[Animal(name='luna', age=4, fav_food='yarn')]

>>> fido.shelter = None

>>> session.query(Animal).filter(Animal.shelter == berkeley).all()

[Animal(name='luna', age=4, fav_food='yarn')]

vanshaj [at] berkeley [dot] edu 20

SQLAlchemy 1: Saving our Data

>>> berkeley

Shelter(name='Berkeley Shelter', address='UC Berkeley')

>>> fido

Animal(name='fido', age=2, fav_food='homework')

>>> luna

Animal(name='luna', age=4, fav_food='yarn')

>>> session.commit()

vanshaj [at] berkeley [dot] edu 21

SQLAlchemy Round 2

The following slides will all occur in the same Python interpreter session. This

means that, once de�ned, a variable will continue to exist until we exit the

interpreter.

To launch this interpreter with the relevant �le loaded in:

$ python3 -i shelter_system.py

vanshaj [at] berkeley [dot] edu 22

SQLAlchemy 2: Loading our Data

>>> berkeley = session.query(Shelter).one()

>>> berkeley

Shelter(name='Berkeley Shelter', address='UC Berkeley')

>>> berkeley.animals

[Animal(name='luna', age=4, fav_food='yarn')]

>>> luna = berkeley.animals[0]

>>> luna

Animal(name='luna', age=4, fav_food='yarn')

>>> fido = session.query(Animal).filter(Animal.shelter == None).one()

>>> fido

Animal(name='fido', age=2, fav_food='homework')

vanshaj [at] berkeley [dot] edu 23

SQLAlchemy 2: Modifying and Saving our Data

>>> fido.shelter = berkeley

>>> session.dirty

IdentitySet([

 Animal(name='fido', age=2, fav_food='homework'),

 Shelter(name='Berkeley Shelter', address='UC Berkeley')

])

>>> session.commit()

vanshaj [at] berkeley [dot] edu 24

SQLAlchemy Round 3

The following slides will all occur in the same Python interpreter session. This

means that, once de�ned, a variable will continue to exist until we exit the

interpreter.

To launch this interpreter with the relevant �le loaded in:

$ python3 -i shelter_system.py

vanshaj [at] berkeley [dot] edu 25

SQLAlchemy 3: Loading our Data

>>> session.query(Shelter).one().animals

[Animal(name='fido', age=2, fav_food='homework'),

 Animal(name='luna', age=4, fav_food='yarn')]

All of our data persists! And we didn't have to write a syncing mechanism, or a
save/load system, or a �ltering system. SQLAlchemy takes care of all of this for us,

which saves us a ton of time when our models get more complicated, connected,

involved, and numerous.

vanshaj [at] berkeley [dot] edu 26

Examples of Real-World Use: OH Queue

class User(db.Model, UserMixin):

 __tablename__ = "user"

id = db.Column(db.Integer, primary_key=True)

 created = db.Column(db.DateTime, default=db.func.now())

 email = db.Column(db.String(255), nullable=False, index=True)

 name = db.Column(db.String(255), nullable=False)

 is_staff = db.Column(db.Boolean, default=False)

 course = db.Column(db.String(255), nullable=False, index=True)

 call_url = db.Column(db.String(255))

 doc_url = db.Column(db.String(255))

vanshaj [at] berkeley [dot] edu 27

Examples of Real-World Use: OH Queue

class Ticket(db.Model):

 __tablename__ = "ticket"

id = db.Column(db.Integer, primary_key=True)

 created = db.Column(db.DateTime, default=db.func.now(), index=True)

 updated = db.Column(db.DateTime, onupdate=db.func.now())

 status = db.Column(EnumType(TicketStatus), index=True)

 sort_key = db.Column(db.DateTime, default=db.func.now(), index=True)

 user_id = db.Column(db.ForeignKey("user.id"), index=True)

 helper_id = db.Column(db.ForeignKey("user.id"), index=True)

 assign_id = db.Column(db.ForeignKey("assignment.id"), index=True)

 ...

vanshaj [at] berkeley [dot] edu 28

Examples of Real-World Use: OH Queue

class Ticket(db.Model):

 ...

 location_id = db.Column(db.ForeignKey("location.id"), index=True)

 question = db.Column(db.String(255))

 description = db.Column(db.Text)

 user = db.relationship(User, foreign_keys=[user_id])

 helper = db.relationship(User, foreign_keys=[helper_id])

 assignment = db.relationship(Assignment, foreign_keys=[assign_id])

 location = db.relationship(Location, foreign_keys=[location_id])

 course = db.Column(db.String(255))

vanshaj [at] berkeley [dot] edu 29

Examples of Real-World Use: OH Queue

class TicketEvent(db.Model):

 __tablename__ = "ticket_event"

id = db.Column(db.Integer, primary_key=True)

 time = db.Column(db.DateTime, default=db.func.now())

 event_type = db.Column(EnumType(TicketEventType), nullable=False)

 ticket_id = db.Column(db.ForeignKey("ticket.id"), nullable=False)

 user_id = db.Column(db.ForeignKey("user.id"), nullable=False)

 course = db.Column(db.String(255), nullable=False, index=True)

 ticket = db.relationship(Ticket)

 user = db.relationship(User)

vanshaj [at] berkeley [dot] edu 30

Examples of Real-World Use: OH Queue

Example of some data you might get out of the OH Queue:

>>> session.query(Ticket).filter(Ticket.course == "cs61b")

vanshaj [at] berkeley [dot] edu 31

Examples of Real-World Use: Sections Tool

class Section(db.Model):

id: int = db.Column(db.Integer, primary_key=True)

 course: str = db.Column(db.String(255), index=True)

 description: str = db.Column(db.String(255))

 capacity: int = db.Column(db.Integer)

 can_self_enroll: bool = db.Column(db.Boolean)

 enrollment_code: str = db.Column(db.String(255), nullable=True)

 staff_id: int = db.Column(db.Integer, db.ForeignKey("user.id"))

 staff: "User" = db.relationship(

"User",

 backref=db.backref("sections_taught", lazy="joined"),

 foreign_keys=[staff_id],

)

vanshaj [at] berkeley [dot] edu 32

Examples of Real-World Use: Sections Tool

class Slot(db.Model):

id: int = db.Column(db.Integer, primary_key=True)

 course: str = db.Column(db.String(255), index=True)

 name: str = db.Column(db.String(255))

 start_time: int = db.Column(db.Integer)

 end_time: int = db.Column(db.Integer)

 location: str = db.Column(db.String(255), nullable=False)

 call_link: str = db.Column(db.String(255), nullable=True)

 section_id: int = db.Column(db.Integer, db.ForeignKey("section.id"))

 section: Section = db.relationship(

"Section", backref=db.backref("slots")

)

 sessions: List["Session"]

vanshaj [at] berkeley [dot] edu 33

Examples of Real-World Use: Sections Tool

class Session(db.Model):

id: int = db.Column(db.Integer, primary_key=True)

 course: str = db.Column(db.String(255), index=True)

 start_time: int = db.Column(db.Integer)

 slot_id: int = db.Column(db.Integer, db.ForeignKey("slot.id")))

 attendances: List["Attendance"]

class AttendanceStatus(Enum):

 present = 1

 excused = 2

 absent = 3

vanshaj [at] berkeley [dot] edu 34

Examples of Real-World Use: Sections Tool

class Attendance(db.Model):

id: int = db.Column(db.Integer, primary_key=True)

 course: str = db.Column(db.String(255), index=True)

 status: AttendanceStatus = db.Column(db.Enum(AttendanceStatus))

 session_id: int = db.Column(db.Integer, db.ForeignKey("session.id"))

 session: Session = db.relationship(

"Session", backref=db.backref("attendances", lazy="joined"),

 innerjoin=True,

)

 student_id: int = db.Column(db.Integer, db.ForeignKey("user.id"))

 student: "User" = db.relationship(

"User", backref=db.backref("attendances"), innerjoin=True

)

vanshaj [at] berkeley [dot] edu 35

(Appendix) Another Possible Solution: SQL

SQL (Structured Query Language) is a declarative language (more on these after

Spring Break) that is designed to help manage large amounts of (often related)

data. We used to teach this in 61A after Scheme, but in a way that was pretty

detached from the rest of the course.

Biggest drawback: learning a new language with wildly different syntax.

SELECT * FROM animals WHERE age > 3 AND shelter = "Berkeley Shelter"

AND fav_food = "yarn";

SELECT * FROM shelters WHERE name = "Berkeley Shelter"

AND address = "UC Berkeley";

vanshaj [at] berkeley [dot] edu 36

(Appendix) Problems with SQL: Security

The exploit above is known as SQL injection, and you can learn more about it by

taking CS 161 or CS 169A.

vanshaj [at] berkeley [dot] edu 37

(Appendix) Problems with SQL: Unwieldy

select student.section_id as section_id,

 student.email as student_email,

 student.name as student_name,

 slot.name as section_type,

 slot.location as section_location,

 staff.email as staff_email,

 staff.name as staff_name

from user as student, slot, user as staff, section

where student.course = "cs61a"

and student.is_staff = 0

and student.section_id = slot.section_id

and student.section_id = section.id

and section.staff_id = staff.id

vanshaj [at] berkeley [dot] edu 38

(Appendix) SQLAlchemy: Setting Up

To start using SQLAlchemy, we need to install and import it, then set up a Base

class that our models will inherit from. You don't really need to understand this

code, beyond its purpose (hooking into a local database at shelters.db).

shelter_system.py

from sqlalchemy import create_engine

from sqlalchemy import Column, String, Integer, ForeignKey

from sqlalchemy.orm import declarative_base, sessionmaker, relationship

engine = create_engine("sqlite:///shelters.db", echo=False)

Base = declarative_base()

vanshaj [at] berkeley [dot] edu 39

(Appendix) SQLAlchemy: Declaring the Models

Once we've created all of the subclasses of Base that we wanted, it's time to

declare them in our database and create a session that we can use to read

from/write to our database.

shelter_system.py

Base.metadata.create_all(engine)

Session = sessionmaker(bind=engine)

session = Session()

vanshaj [at] berkeley [dot] edu 40

Submit anonymous feedback at imvs.me/t/anon

Thanks for stopping by :)

vanshaj [at] berkeley [dot] edu

http://imvs.me/t/anon

