Trees

file:///save/berkeley-cs61a/.scratch_5/src/slides/sp22/17-Trees.html?print-pdf#/
file:///save/berkeley-cs61a/.scratch_5/src/slides/sp22/17-Trees.html?print-pdf#

Class outline:

e Trees

e Tree class

e Tree processing
e Tree creation

e Tree mutation

file:///save/berkeley-cs61a/.scratch_5/src/slides/sp22/17-Trees.html?print-pdf#/1

Trees

file:///save/berkeley-cs61a/.scratch_5/src/slides/sp22/17-Trees.html?print-pdf#/2

Trees

Recursive description

e A tree has a root label and a
list of branches

e Each branch is itself a tree

e A tree with zero branches is
called a leaf

e A tree starts at the root

file:///save/berkeley-cs61a/.scratch_5/src/slides/sp22/17-Trees.html?print-pdf#/3

Trees

J\ T f'l 2

Recursive description Relative description

e A tree has a root label and a e Each location in a tree is
list of branches called a node

e Each branch is itself a tree e EFach node has a label that

e A tree with zero branches is can be any value
called a leaf ¢ One node can be the

e A tree starts at the root parent/child of another

e The top node is the root node

file:///save/berkeley-cs61a/.scratch_5/src/slides/sp22/17-Trees.html?print-pdf#/3

Trees, trees, everywhere!

file:///save/berkeley-cs61a/.scratch_5/src/slides/sp22/17-Trees.html?print-pdf#/4

Directory structures

homework

cs6bla

projects

hwO01 hw02 cats
th‘I.pyJ okJ thZ.pyJ okJ IabO'I.pyJ okJ IabOZ.pyJ okJ hog.pyj okJ cats.py J okJ

file:///save/berkeley-cs61a/.scratch_5/src/slides/sp22/17-Trees.html?print-pdf#/5

Parse trees

For natural languages...

N
VANVAN
D/\N
o

A mouse eats a cat.

Key: S = Sentence, NP = Noun phrase, D = Determiner, N = Noun, V =
Verb, VP = Verb Phrase

file:///save/berkeley-cs61a/.scratch_5/src/slides/sp22/17-Trees.html?print-pdf#/6

Parse trees

For programming languages, too...

Key: E = expression

file:///save/berkeley-cs61a/.scratch_5/src/slides/sp22/17-Trees.html?print-pdf#/7

Tree class

file:///save/berkeley-cs61a/.scratch_5/src/slides/sp22/17-Trees.html?print-pdf#/8

A Tree object

A Tree is an object composed of other Tree objects, so its
constructor must have a way of passing in children Trees.

Our approach:

Tree (1),

Tree (2, [
Tree (1),
Tree (1)
1)

file:///save/berkeley-cs61a/.scratch_5/src/slides/sp22/17-Trees.html?print-pdf#/9

The Tree object (cont'd)

A Tree should store these instance variables:

label The root label of the tree

branches A list of branches (subtrees) of the tree

And expose this instance method:

is leaf Returns a boolean indicating if tree is a
leaf
t = Tree(3, [
Tree (1),
Tree (2, [
Tree (1),
Tree (1)
1)
1)
t.label

t.is leaf ()

t.branches[0] .is_leaf ()

[\
A

file:///save/berkeley-cs61a/.scratch_5/src/slides/sp22/17-Trees.html?print-pdf#/10

The Tree object (cont'd)

A Tree should store these instance variables:

label The root label of the tree

branches A list of branches (subtrees) of the tree

And expose this instance method:

is leaf Returns a boolean indicating if tree is a
leaf
t = Tree(3, [
Tree (1),
Tree (2, [
Tree (1),
Tree (1)
1)
1)
t.label # 3

t.is leaf ()

t.branches[0] .is_leaf ()

[\
A

file:///save/berkeley-cs61a/.scratch_5/src/slides/sp22/17-Trees.html?print-pdf#/10

The Tree object (cont'd)

A Tree should store these instance variables:

label The root label of the tree

branches A list of branches (subtrees) of the tree

And expose this instance method:

is leaf Returns a boolean indicating if tree is a
leaf
t = Tree(3, [
Tree (1),
Tree (2, [
Tree (1),
Tree (1)
1)
1)
t.label # 3

t.is_leaf () # False

t.branches[0] .is_leaf ()

[\
A

file:///save/berkeley-cs61a/.scratch_5/src/slides/sp22/17-Trees.html?print-pdf#/10

The Tree object (cont'd)

A Tree should store these instance variables:

label The root label of the tree

branches A list of branches (subtrees) of the tree

And expose this instance method:

is leaf Returns a boolean indicating if tree is a
leaf
t = Tree(3, [
Tree (1),
Tree (2, [
Tree (1),
Tree (1)
1)
1)
t.label # 3

t.is_leaf () # False

t.branches[0] .is_leaf ()

[\
A

True

file:///save/berkeley-cs61a/.scratch_5/src/slides/sp22/17-Trees.html?print-pdf#/10

The Tree class

t = Tree(3, [Tree(l), Tree(2, [Tree(l), Tree(l)])1)
t.label # 3

t.is_leaf () # False

t.branches[0] .1is_leaf () # True

How could we write the class definition for Tree?

file:///save/berkeley-cs61a/.scratch_5/src/slides/sp22/17-Trees.html?print-pdf#/11

The Tree class

t = Tree(3, [Tree(l), Tree(2, [Tree(l), Tree(l)])1)
t.label # 3

t.is_leaf () # False

t.branches[0] .1is_leaf () # True

How could we write the class definition for Tree?

class Tree:
def init (self, label, branches=][]):
self.label = label
self .branches = list (branches)

def is leaf (self):
return not self.branches

L]

file:///save/berkeley-cs61a/.scratch_5/src/slides/sp22/17-Trees.html?print-pdf#/11

A fancier Tree

This is what assignments actually use:

class Tree:

def __init__ (self, label, branches=[]):
self.label = label
for branch in branches:
assert isinstance(branch, Tree)
self.branches = list (branches)

def is_leaf (self):
return not self.branches

def __repr (self):
if self.branches:

branch_str = ', ' + repr(self.branches)
else:
branch str = '
return 'Tree({0}{1})'.format (self.label, branch_str)

def str__ (self):

return '\n'.join(self.indented())

def indented(self):
lines = []
for b in self.branches:
for line in b.indented() :
lines.append ("' ' + line)
return [str(self.label)] + lines

It's built in to code.cs61a.org, and you can draw() any Tree!

file:///save/berkeley-cs61a/.scratch_5/src/slides/sp22/17-Trees.html?print-pdf#/12

Tree processing

file:///save/berkeley-cs61a/.scratch_5/src/slides/sp22/17-Trees.html?print-pdf#/13

Tree processing

A tree is a recursive structure.
Each tree has:

e A label
e 0 or more branches, each a tree

Recursive structure implies recursive algorithm!

file:///save/berkeley-cs61a/.scratch_5/src/slides/sp22/17-Trees.html?print-pdf#/14

Counting leaves

def count_leaves(t) : L.
n"nnReturns the number of leaf nodes in T.""n
if

else:

What's the base case? What's the recursive call?

file:///save/berkeley-cs61a/.scratch_5/src/slides/sp22/17-Trees.html?print-pdf#/15

Counting leaves

def count leaves (t) :
nnnReturns the number of leaf nodes in T.""n
if t.is leaf () :

else:

What's the base case? What's the recursive call?

&

file:///save/berkeley-cs61a/.scratch_5/src/slides/sp22/17-Trees.html?print-pdf#/15

Counting leaves

def count_leaves (t):
nnrReturns the number of leaf nodes in T.""™"
if t.is leaf () :
return 1
else:

What's the base case? What's the recursive call?

&

file:///save/berkeley-cs61a/.scratch_5/src/slides/sp22/17-Trees.html?print-pdf#/15

Counting leaves

def count_leaves (t):
nnrReturns the number of leaf nodes in T.""™"
if t.is leaf () :
return 1
else:
leaves under = 0
for b in t.branches:
leaves under += count leaves (b)
return leaves_under

What's the base case? What's the recursive call?

file:///save/berkeley-cs61a/.scratch_5/src/slides/sp22/17-Trees.html?print-pdf#/15

Counting leaves (cont'd)

The sum() function sums up the items of an iterable.

sum([1, 1, 1, 1]) # 4

https://docs.python.org/3/library/functions.html#sum
file:///save/berkeley-cs61a/.scratch_5/src/slides/sp22/17-Trees.html?print-pdf#/16

Counting leaves (cont'd)

The sum() function sums up the items of an iterable.

sum([1, 1, 1, 1]) # 4

That leads to this shorter function:

def count leaves (t):
"nnwReturns the number of leaf nodes in T."""
if t.is_leaf():
return 1
else:
branch_counts = [count_leaves(b) for b in t.branches]
return sum(branch_ counts)

123

o

https://docs.python.org/3/library/functions.html#sum
file:///save/berkeley-cs61a/.scratch_5/src/slides/sp22/17-Trees.html?print-pdf#/16

Exercise: Printing trees

def print tree(t, indent=0):
nnnprints the labels of T with depth-based indent.

>>> t = Tree (3, [Tree(l), Tree(2, [Tree(l), Tree(1)])])
>>> print (t)
3
1
2
1
1

file:///save/berkeley-cs61a/.scratch_5/src/slides/sp22/17-Trees.html?print-pdf#/17

Exercise: Printing trees (solution)

def print tree(t, indent=0):
nnnprints the labels of T with depth-based indent.
>>> t = Tree (3, [Tree(l), Tree(2, [Tree(l), Tree(1l)])])
>>> print (t)
3
1
2
1
1
print (indent * " " + t.label)

for b in t.branches:
print_tree (b, indent + 2)

file:///save/berkeley-cs61a/.scratch_5/src/slides/sp22/17-Trees.html?print-pdf#/18

Exercise: List of leaves

def leaves (t) : u

"wrReturn a list containing the leaf labels of T.

>>> t = Tree (20, [Tree(l2, [Tree(9, [Tree(7), Tree(2)]), Tree/(:
>>> Jleaves (t)

(7, 2, 3, 4, 4]

Hint: If you sum a list of lists, you get a list containing the elements
of those lists. The sum function takes a second argument, the
starting value of the sum.

sum ([[1]1, [2, 31, [41 1, [1) # [1, 2, 3, 4] 15
sum([[1] 1, [1) # [1]
sum([[[1]11, [21 1, [1) # [[1], 2]

file:///save/berkeley-cs61a/.scratch_5/src/slides/sp22/17-Trees.html?print-pdf#/19

Exercise: List of leaves (Solution)
def leaves (t): u

"mnReturn a list containing the leaf labels of T.
>>> t = Tree (20, [Tree(l2, [Tree(9, [Tree(7), Tree(2)]), Tree(:
>>> leaves (t)
(7, 2, 3, 4, 4]
if t.is_leaf () :
return [t.label]
else:
leaf labels = [leaves(b) for b in t.branches]
return sum(leaf_labels, [])

file:///save/berkeley-cs61a/.scratch_5/src/slides/sp22/17-Trees.html?print-pdf#/20

Exercise: Counting paths

def count_paths(t, total):
n"nnReturn the number of paths from the root to any node in T
for which the labels along the path sum to TOTAL.

>>> t = Tree(3, [Tree(-1), Tree(l, [Tree(2, [Tree(1)]), Tree(3)]), Tree(l, |
>>> count_paths(t, 3)

2

>>> count_paths (t, 4)

2

>>> count_paths(t, 5)

0

>>> count_paths (t, 6)

1

>>> count_paths (t, 7)
2

file:///save/berkeley-cs61a/.scratch_5/src/slides/sp22/17-Trees.html?print-pdf#/21

Exercise: Counting paths (solution)

def count_paths(t, total):
nnnReturn the number of paths from the root to any node in T
for which the labels along the path sum to TOTAL.

>>> t = Tree(3, [Tree(-1), Tree(l, [Tree(2, [Tree(1)]), Tree(3)]), Tree(l, |
>>> count_paths (t, 3)
2
>>> count_paths (t, 4)
2
>>> count_paths(t, 5)
0
>>> count_paths (t, 6)
1
>>> count_paths(t, 7)
2
if t.label == total:
found = 1
else:
found = 0

return found + sum([count_paths (b, total - t.label) for b in t.branches])

file:///save/berkeley-cs61a/.scratch_5/src/slides/sp22/17-Trees.html?print-pdf#/22

Creating trees

A function that creates a tree from another tree is also
often recursive.

file:///save/berkeley-cs61a/.scratch_5/src/slides/sp22/17-Trees.html?print-pdf#/23

Creating trees: Doubling labels

def double (t) :
""rReturns a tree identical to T, but with all la
if
else:

What's the base case? What's the recursive call?

file:///save/berkeley-cs61a/.scratch_5/src/slides/sp22/17-Trees.html?print-pdf#/24

Creating trees: Doubling labels

def double (t) : L

"WWReturns a tree identical to T, but with all la

if t.is leaf () :

else:

What's the base case? What's the recursive call?

file:///save/berkeley-cs61a/.scratch_5/src/slides/sp22/17-Trees.html?print-pdf#/24

Creating trees: Doubling labels

def double (t) : L

"WWReturns a tree identical to T, but with all la

if t.is leaf () :
return Tree(t.label * 2)
else:

What's the base case? What's the recursive call?

file:///save/berkeley-cs61a/.scratch_5/src/slides/sp22/17-Trees.html?print-pdf#/24

Creating trees: Doubling labels

def double (t) : L

"WWReturns a tree identical to T, but with all la

if t.is leaf () :
return Tree(t.label * 2)
else:
return Tree(t.label * 2,
[double(b) for b in t.branches])

What's the base case? What's the recursive call?

file:///save/berkeley-cs61a/.scratch_5/src/slides/sp22/17-Trees.html?print-pdf#/24

Creating trees: Doubling labels

A shorter solution:

def doublle (t):

"nnReoturns the number of leaf nodes in T.wnn
return Tree(t.label * 2,
[double (b) for b in t.branches])

Explicit base cases aren't always necessary in the final code, but it's
useful to think in terms of base case vs. recursive case when
learning.

file:///save/berkeley-cs61a/.scratch_5/src/slides/sp22/17-Trees.html?print-pdf#/25

Tree mutation

file:///save/berkeley-cs61a/.scratch_5/src/slides/sp22/17-Trees.html?print-pdf#/26

Doubling a Tree

def double(t):
"""Doubles every label in T, mutating T.

>>> t = Tree(l, [Tree(3, [Tree(5)]), Tree(7)])
>>> double(t)

>>> t

Tree (2, [Tree(6, [Tree(10)]), Tree(14)1])

t.label = t.label * 2
for b in t.branches:
double (b)

file:///save/berkeley-cs61a/.scratch_5/src/slides/sp22/17-Trees.html?print-pdf#/27

Exercise: Pruning trees

Removing subtrees from a tree is
called pruning.

Always prune branches before
recursive processing.

def prune(t, n):
"wrprune all sub-trees whose label is n.

>>> t = Tree (3, [Tree(l, [Tree(0), Tree(l)]),
>>> prune(t, 1)

>>> t

Tree (3, [Tree(2)])

t .branches = [for b in t.branches if]

for b in t.branches:

)

prune (,

Tree (2,

.

[Tree (1)

file:///save/berkeley-cs61a/.scratch_5/src/slides/sp22/17-Trees.html?print-pdf#/28

Exercise: Pruning trees (Solution)

Removing subtrees from a tree is 3
called pruning.

Always prune branches before o
recursive processing.

def prune(t, n): u

"""Prune all sub-trees whose label is n.

>>> t = Tree (3, [Tree(l, [Tree(0), Tree(l)]), Tree(2, [Tree(l)

>>> prune(t, 1)

>>> t
Tree (3, [Tree(2)])
t.branches = [b for b in t.branches if b.label !=n]

for b in t.branches:
prune (b, n)

file:///save/berkeley-cs61a/.scratch_5/src/slides/sp22/17-Trees.html?print-pdf#/29

