Composition,
Representation

file:///save/berkeley-cs61a/.scratch_6/src/slides/sp22/16-Composition_Representation.html?print-pdf#/
file:///save/berkeley-cs61a/.scratch_6/src/slides/sp22/16-Composition_Representation.html?print-pdf#

Class outline:

e Composition
e Representation

file:///save/berkeley-cs61a/.scratch_6/src/slides/sp22/16-Composition_Representation.html?print-pdf#/1

Composition

file:///save/berkeley-cs61a/.scratch_6/src/slides/sp22/16-Composition_Representation.html?print-pdf#/2

Composition

An object can contain references to objects of other
classes.

What examples of composition are in an animal
conservatory?

e An animal has a mate.

e An animal has a mother.

e An animal has children.

e A conservatory has animals.

file:///save/berkeley-cs61a/.scratch_6/src/slides/sp22/16-Composition_Representation.html?print-pdf#/3

Referencing other instances

An instance variable can refer to another instance.

We can add this method to the base Animal class that
adds a mate instance variable:

class Animal: E

def mate with(self, other):
if other is not self and other.species_name == self.species_name:

self.mate = other
other.mate = self

How would we call that method?

file:///assets/slides/15-Inheritance.html#/11
file:///save/berkeley-cs61a/.scratch_6/src/slides/sp22/16-Composition_Representation.html?print-pdf#/4

Referencing other instances

An instance variable can refer to another instance.

We can add this method to the base Animal class that
adds a mate instance variable:

class Animal:

if other is not self and other.species_name == self.species_name:
self.mate = other

other.mate = self

def mate with(self, other):

How would we call that method?

mr_ wabbit = Rabbit ("Mister Wabbit", 3) u
jane_doe = Rabbit ("Jane Doe", 2)

mr_ wabbit.mate_with(jane doe)

file:///assets/slides/15-Inheritance.html#/11
file:///save/berkeley-cs61a/.scratch_6/src/slides/sp22/16-Composition_Representation.html?print-pdf#/4

Referencing a list of instances

An instance variable can also store a list of instances.

We can add this method to the Rabbit class that adds a

babies instance variable.

class Rabbit (Animal) :

def reproduce like rabbits(self):
if self.mate is None:
print ("oh no! better go on ZoOkCupid")
return
self .babies = []
for _ in range(0, self.num in_ litter):
self.babies.append (Rabbit ("bunny", 0))

How would we call that function?

file:///assets/slides/15-Inheritance.html#/13
file:///save/berkeley-cs61a/.scratch_6/src/slides/sp22/16-Composition_Representation.html?print-pdf#/5

Referencing a list of instances

An instance variable can also store a list of instances.

We can add this method to the Rabbit class that adds a

babies instance variable.
class Rabbit (Animal) :

def reproduce like rabbits(self):
if self.mate is None:

print ("oh no! better go on ZoOkCupid")
return

self.babies = []
for _ in range (0, self.num in_ litter):
self.babies.append (Rabbit ("bunny", 0))

How would we call that function?

mr_wabbit = Rabbit ("Mister Wabbit", 3)
jane_doe = Rabbit ("Jane Doe", 2)
mr_wabbit.mate_with (jane_doe)
jane_doe.reproduce_like rabbits ()

file:///assets/slides/15-Inheritance.html#/13
file:///save/berkeley-cs61a/.scratch_6/src/slides/sp22/16-Composition_Representation.html?print-pdf#/5

Relying on a common interface

If all instances implement a method with the same function
signature, a program can rely on that method across instances of
different subclasses.

def partytime (animals) :
nnuAssuming ANIMALS is a list of Animals, cause each
to interact with all the others exactly once."""
for i in range(len(animals)) :
for j in range(i + 1, len(animals)):
animals [i] .interact_with (animals[j])

How would we call that function?

file:///save/berkeley-cs61a/.scratch_6/src/slides/sp22/16-Composition_Representation.html?print-pdf#/6

Relying on a common interface

If all instances implement a method with the same function
signature, a program can rely on that method across instances of
different subclasses.

def partytime (animals) :
nnuAssuming ANIMALS is a list of Animals, cause each
to interact with all the others exactly once."""
for i in range(len(animals)) :
for j in range(i + 1, len(animals)):
animals [i] .interact_with (animals[j])

How would we call that function?

jane_doe = Rabbit ("Jane Doe", 2)

scar = Lion("Scar", 12)

elly = Elephant ("Elly", 5)

pandy = Panda ("PandeyBear", 4)

partytime ([jane _doe, scar, elly, pandyl)

file:///save/berkeley-cs61a/.scratch_6/src/slides/sp22/16-Composition_Representation.html?print-pdf#/6

Composition vs. Inheritance

Inheritance is best for representing "is-a" relationships

e Rabbit is a specific type of Animal
e S0, Rabbit inherits from Animal

Composition is best for representing "has-a" relationships

e A conservatory has a collection of animals it cares for
e S0, a conservatory has a list of animals as an instance variable

file:///save/berkeley-cs61a/.scratch_6/src/slides/sp22/16-Composition_Representation.html?print-pdf#/7

Objects everywhere

file:///save/berkeley-cs61a/.scratch_6/src/slides/sp22/16-Composition_Representation.html?print-pdf#/8

So many objects

What are the objects in this code?

class Lamb:
species_name = "Lamb"

scientific_name = "Ovis aries"

def init (self, name):

self.name = name

def play(self):
self.happy = True

lamb = Lamb ("Lil")

owner = "Mary"

had_a lamb = True

fleece = {"color": "white",
kids_at_school = ["Billy",
day = 1

"fluffiness": 100}

"Tilly" ,

"Jilly"]

file:///save/berkeley-cs61a/.scratch_6/src/slides/sp22/16-Composition_Representation.html?print-pdf#/9

So many objects

What are the objects in this code?

class Lamb:

species_name = "Lamb"
scientific_name = "Ovis aries"
def init (self, name):

self.name = name

def play(self):
self.happy = True

lamb = Lamb ("Lil")

owner = "Mary"

had_a lamb = True

fleece = {"color": "white", "fluffiness": 100}
kids_at_school = ["Billy", "Tilly", "Jilly"]
day = 1

lamb, owner, had a lamb, fleece, kids at school, day, etc.
We can prove it by checking object. class . bases , which
reports the base class(es) of the object's class.

file:///save/berkeley-cs61a/.scratch_6/src/slides/sp22/16-Composition_Representation.html?print-pdf#/9

It's all objects

All the built-in types inherit from object:

str int

bool

file:///save/berkeley-cs61a/.scratch_6/src/slides/sp22/16-Composition_Representation.html?print-pdf#/10

Built-in object attributes

If all the built-in types and user classes inherit from
object, what are they inheriting?

Just ask dir (), a built-in function that returns a list of all
the "interesting" attributes on an object.

dir (object) E

file:///save/berkeley-cs61a/.scratch_6/src/slides/sp22/16-Composition_Representation.html?print-pdf#/11

Built-in object attributes

If all the built-in types and user classes inherit from
object, what are they inheriting?

Just ask dir (), a built-in function that returns a list of all
the "interesting" attributes on an object.

dir (object)

e For string representation: repr , str , format

e For comparisons: eq , ge , gt , le , 1t , ne

e Related to classes: bases , class , new , init , init subclass , subclasshook |,
__setattr , delattr , getattribute

e Others: dir , hash , module , reduce , reduce ex

Python calls these methods behind these scenes, so we are often
not aware when the "dunder"” methods are being called.
Let us become enlightened!

file:///save/berkeley-cs61a/.scratch_6/src/slides/sp22/16-Composition_Representation.html?print-pdf#/11

String representation

file:///save/berkeley-cs61a/.scratch_6/src/slides/sp22/16-Composition_Representation.html?print-pdf#/12

Str

The str method returns a human readable string
representation of an object.

from fractions import Fraction

one third = 1/3
one _half = Fraction(l, 2)

float. str (one third)
Fraction. str (one_half)

file:///save/berkeley-cs61a/.scratch_6/src/slides/sp22/16-Composition_Representation.html?print-pdf#/13

__str

The str method returns a human readable string
representation of an object.

from fractions import Fraction

one third = 1/3

one_half = Fraction(1l, 2)
float._ str_ (one_ third) # '0.3333333333333333"
Fraction. str (one _half) # '1/2°

file:///save/berkeley-cs61a/.scratch_6/src/slides/sp22/16-Composition_Representation.html?print-pdf#/13

__str__usage

The str method is used in multiple places by Python:
print() function, str() constructor, f-strings, and more.

from fractions import Fraction

one third = 1/3
one _half = Fraction(l, 2)

print (one_third)

print (one_half)

str (one_third)
str (one_half)

t"{one half} > {one third}"

file:///save/berkeley-cs61a/.scratch_6/src/slides/sp22/16-Composition_Representation.html?print-pdf#/14

str__ usage

The str method is used in multiple places by Python:
print() function, str() constructor, f-strings, and more.

from fractions import Fraction

one third = 1/3
one _half = Fraction(l, 2)

print (one_third)
print (one_half)

str (one_third)
str (one_half)

t"{one half} > {one third}"

+H

H +H=

#

'0.3333333333333333"
|1/2|

'0.3333333333333333"
|1/2|

'1/2 > 0.3333333333333333"

file:///save/berkeley-cs61a/.scratch_6/src/slides/sp22/16-Composition_Representation.html?print-pdf#/14

Custom __str__ behavior

When making custom classes, we can override
define our human readable string representation.

class Lamb:
species_name = "Lamb"
scientific_name = "Ovis aries"

def init (self, name):
self .name = name

def str (self):
return "Lamb named " + self.name

1il = Lamb ("Lil lamb")
str(lil)

print (1il)

str

to

file:///save/berkeley-cs61a/.scratch_6/src/slides/sp22/16-Composition_Representation.html?print-pdf#/15

__repr__

The repr method returns a string that would evaluate
to an object with the same values.

from fractions import Fraction

one_half = Fraction(1l, 2)
Fraction._ repr_ (one_half) # 'Fraction(1l, 2)°'

If implemented correctly, calling eval() on the result should return
back that same-valued object.

another half = eval (Fraction._ repr__ (one_half))

file:///save/berkeley-cs61a/.scratch_6/src/slides/sp22/16-Composition_Representation.html?print-pdf#/16

__repr__usage

The repr method is used multiple places by Python:
when repr(object) is called and when displaying an
object in an interactive Python session.

from fractions import Fraction

one_third = 1/3
one_half = Fraction(l, 2)

one_third
one_half

repr (one_third)
repr (one_half)

file:///save/berkeley-cs61a/.scratch_6/src/slides/sp22/16-Composition_Representation.html?print-pdf#/17

Custom __repr__ behavior

When making custom classes, we can override repr

to return a more appropriate Python representation.

class Lamb:
species_name = "Lamb"
scientific_name = "Ovis aries"

def init (self, name):
self .name = name

def str (self):
return "Lamb named " + self.name

def = repr (self):
return f"Lamb ({repr (self.name)})"

1il = Lamb ("Lil lamb")
repr (1il)
1il

Ll

file:///save/berkeley-cs61a/.scratch_6/src/slides/sp22/16-Composition_Representation.html?print-pdf#/18

The rules of repr and str

When the repr(obj) function is called:

e Python calls the ClassName. repr method if it exists.

e If ClassName. repr does not exist, Python will look
up the chain of parent classes until it finds one with
~_repr defined.

o If all else fails, object. repr will be called.

When the str(obj) class constructor is called:

e Python calls the ClassName. str method if it exists.

e Ifno str method is found on that class, Python
calls repr() on the object instead.

e ™ See above!

file:///save/berkeley-cs61a/.scratch_6/src/slides/sp22/16-Composition_Representation.html?print-pdf#/19

Special methods

file:///save/berkeley-cs61a/.scratch_6/src/slides/sp22/16-Composition_Representation.html?print-pdf#/20

Special methods

Special methods have built-in behavior. Special method names
always start and end with double underscores.

Name Behavior

~init Method invoked automatically when an object is
constructed

__repr__ Method invoked to display an object as a Python
expression

_str Method invoked to stringify an object

_add Method invoked to add one object to another

~_bool Method invoked to convert an object to True or False

~_float Method invoked to convert an object to a float (real
number)

See all special method names.

https://docs.python.org/3/reference/datamodel.html#special-method-names
file:///save/berkeley-cs61a/.scratch_6/src/slides/sp22/16-Composition_Representation.html?print-pdf#/21

Special method examples

zero = 0
one

i
'_\

two

Standard approach Dunder equivalent

one + two # 3 one.__add__ (two) # 3
bool (zero) # False zero._ _bool__ () # False
bool (one) # True one._ _bool_ () # True

file:///save/berkeley-cs61a/.scratch_6/src/slides/sp22/16-Composition_Representation.html?print-pdf#/22

Adding together custom objects

Consider the following class:

from math import gcd

class Rational:
def init (self, numerator, denominator) :
g = gcd(numerator, denominator)
self.numer = numerator // g

self.denom denominator // g

def = str (self):
return f"{self.numer}/{self.denom}"

def _ repr (self):
return f"Rational ({self.numer}, {self.denom})™"

Will this work?

Rational (1, 2) + Rational (3, 4)

file:///save/berkeley-cs61a/.scratch_6/src/slides/sp22/16-Composition_Representation.html?print-pdf#/23

Adding together custom objects

Consider the following class:

from math import gcd

class Rational:
def init (self, numerator, denominator) :
g = gcd(numerator, denominator)
self .numer = numerator // g
self.denom = denominator // g

def = str (self):
return f"{self.numer}/{self.denom}"

def _ repr (self):

return f"Rational ({self.numer}, {self.denom})"

Will this work?

Rational (1, 2) + Rational (3, 4)

TypeError: unsupported operand type(s) for +: 'Rational’ and 'Rational’

file:///save/berkeley-cs61a/.scratch_6/src/slides/sp22/16-Composition_Representation.html?print-pdf#/23

Implementing dunder methods

We can make instances of custom classes addable by
defining the add method:

class Rational:
def @ init (self, numerator, denominator) :
g = gcd (numerator, denominator)

self.numer = numerator // g
self .denom denominator // g

def add (self, other):

The rest...

https://docs.python.org/3/reference/datamodel.html#object.__add__
file:///save/berkeley-cs61a/.scratch_6/src/slides/sp22/16-Composition_Representation.html?print-pdf#/24

Implementing dunder methods

We can make instances of custom classes addable by
defining the add method:

class Rational:
def @ init (self, numerator, denominator) :
g = gcd (numerator, denominator)
self.numer = numerator // g
self.denom = denominator // g

def _ add (self, other):
new_numer = gelf.numer * other.denom + other.numer * gelf.denom
new_denom = self.denom * other.denom
return Rational (new_numer, new_denom)

The rest...

https://docs.python.org/3/reference/datamodel.html#object.__add__
file:///save/berkeley-cs61a/.scratch_6/src/slides/sp22/16-Composition_Representation.html?print-pdf#/24

Implementing dunder methods

We can make instances of custom classes addable by
defining the add method:

class Ratiomnal:
def = init (self, numerator, denominator) :
g = gcd (numerator, denominator)
self.numer = numerator // g
self.denom = denominator // g

def add (self, other):
new_numer = self.numer * other.denom + other.numer * gelf.denom
new_denom = self.denom * other.denom

return Rational (new_numer, new_denom)

The rest...

Now try...

Rational (1, 2) + Rational (3, 4)

https://docs.python.org/3/reference/datamodel.html#object.__add__
file:///save/berkeley-cs61a/.scratch_6/src/slides/sp22/16-Composition_Representation.html?print-pdf#/24

Polymorphism

file:///save/berkeley-cs61a/.scratch_6/src/slides/sp22/16-Composition_Representation.html?print-pdf#/25

Polymorphic functions

Polymorphic function: A function that applies to many
(poly) different forms (morph) of data

str and repr are both polymorphic; they apply to any
object.

repr(1/3) # 10.3333333333333333" m
repr (Rational (1, 3)) # 'Rational (1, 3)'

str(1/3) # 10.3333333333333333" m
str(Rational (1, 3)) # '1/3"

The class of that object can customize the per-object
behavior using str and repr .

file:///save/berkeley-cs61a/.scratch_6/src/slides/sp22/16-Composition_Representation.html?print-pdf#/26

Generic functions

A generic function can apply to arguments of different
types.

def sum two(a, b):
return a + b

What could a and b be?

The function sum two is generic in the type of a and b.

file:///save/berkeley-cs61a/.scratch_6/src/slides/sp22/16-Composition_Representation.html?print-pdf#/27

Generic functions

A generic function can apply to arguments of different
types.

def sum two(a, b):
return a + b

What could a and b be? Anything summable!

The function sum two is generic in the type of a and b.

file:///save/berkeley-cs61a/.scratch_6/src/slides/sp22/16-Composition_Representation.html?print-pdf#/27

Generic function #2

def sum em(items, initial value) : u

"nnReturns the sum of ITEMS,
starting with a value of INITIAL_VALUE."""
sum = initial wvalue
for item in items:
sum += item
return sum

What could items be?

What could initial value be?

The function sum em is generic in the type of items and
the type of initial value.

file:///save/berkeley-cs61a/.scratch_6/src/slides/sp22/16-Composition_Representation.html?print-pdf#/28

Generic function #2

def sum em(items, initial value) : u
"nnReturns the sum of ITEMS,
starting with a value of INITIAL_VALUE."""
sum = initial wvalue
for item in items:
sum += item
return sum

What could items be? Any iterable with summable values.

What could initial value be?

The function sum em is generic in the type of items and
the type of initial value.

file:///save/berkeley-cs61a/.scratch_6/src/slides/sp22/16-Composition_Representation.html?print-pdf#/28

Generic function #2

def sum em(items, initial value) : u
"WihReturns the sum of ITEMS,
starting with a value of INITIAL_ VALUE."""
sum = initial wvalue
for item in items:
sum += item
return sum

What could items be? Any iterable with summable values.

What could initial value be? Any value that can be
summed with the values in iterable.

The function sum em is generic in the type of items and
the type of initial value.

file:///save/berkeley-cs61a/.scratch_6/src/slides/sp22/16-Composition_Representation.html?print-pdf#/28

Type dispatching

Another way to make generic functions is to select a
behavior based on the type of the argument.

def is_valid_month (month) : i
if isinstance (month, int):
return month >= 1 and month <= 12
elif isinstance(month, str):

return month in ["January", "February", "March", "April",
"May", "June", "July", "August", "Septembe:
"October", "November", "December"]

return false

What could month be?

The function is valid month is generic in the type of
month.

file:///save/berkeley-cs61a/.scratch_6/src/slides/sp22/16-Composition_Representation.html?print-pdf#/29

Type dispatching

Another way to make generic functions is to select a
behavior based on the type of the argument.

def is_valid_month (month) : i
if isinstance (month, int):
return month >= 1 and month <= 12
elif isinstance(month, str):

return month in ["January", "February", "March", "April",
"May", "June", "July", "August", "Septembe:
"October", "November", "December"]

return false

What could month be? Either an int or string.

The function is valid month is generic in the type of
month.

file:///save/berkeley-cs61a/.scratch_6/src/slides/sp22/16-Composition_Representation.html?print-pdf#/29

Type coercion

Another way to make generic functions is to coerce an
argument into the desired type.

def sum numbers (nums) :

""WReturns the sum of NUMS"""

sum = Rational (0, 0)

for num in nums:
if isinstance(num, int):

num = Rational (num, 1)

sum += num

return sum

What could nums be?

The function sum numbers is generic in the type of nums.

file:///save/berkeley-cs61a/.scratch_6/src/slides/sp22/16-Composition_Representation.html?print-pdf#/30

Type coercion

Another way to make generic functions is to coerce an
argument into the desired type.

def sum numbers (nums) :

""WReturns the sum of NUMS"""

sum = Rational (0, 0)

for num in nums:
if isinstance(num, int):

num = Rational (num, 1)

sum += num

return sum

What could nums be? Any iterable with ints or Rationals.

The function sum numbers is generic in the type of nums.

file:///save/berkeley-cs61a/.scratch_6/src/slides/sp22/16-Composition_Representation.html?print-pdf#/30

