Containers

file:///save/berkeley-cs61a/.scratch_4/src/slides/sp22/11-Containers.html?print-pdf#/

Class outline:

Lists

e Containment

e For statements

e Ranges

e List comprehensions
e String literals

file:///save/berkeley-cs61a/.scratch_4/src/slides/sp22/11-Containers.html?print-pdf#/1

Lists

file:///save/berkeley-cs61a/.scratch_4/src/slides/sp22/11-Containers.html?print-pdf#/2

Lists

A list is a container that holds a sequence of related
pieces of information.

The shortest list is an empty list, just 2 square brackets:

members = []

Lists can hold any Python values, separated by commas:
members = ["Pamela", "Tinu", "Brenda", "Kaya"]
ages_of_kids = [1, 2, 7]

prices = [79.99, 49.99, 89.99]

digits = [2//2, 2+2+2+2, 2, 2%*2%*2]

remixed = ["Pamela", 7, 79.99, 2*2%*2]

file:///save/berkeley-cs61a/.scratch_4/src/slides/sp22/11-Containers.html?print-pdf#/3

List length

Use the global len() function to find the length of a list.

attendees = ["Tammy", "Shonda", "Tina"]
print (len (attendees))

num of attendees = len (attendees)
print (num _of_ attendees)

What could go wrong with storing the length?

file:///save/berkeley-cs61a/.scratch_4/src/slides/sp22/11-Containers.html?print-pdf#/4

List length

Use the global len() function to find the length of a list.

attendees = ["Tammy", "Shonda", "Tina"]
print (len(attendees)) # 3
num of attendees = len (attendees)

print (num _of_attendees)

What could go wrong with storing the length?

file:///save/berkeley-cs61a/.scratch_4/src/slides/sp22/11-Containers.html?print-pdf#/4

Accessing list items (brackets)

Each list item has an index, starting from O.

letters = ['A', 'B', 'C']
Index: 0 1 2

Access each item by putting the index in brackets:

letters|
letters|
[
[

0]
1]
letters[2]
3]

letters

curr_ind = 1
letters|[curr ind]

file:///save/berkeley-cs61a/.scratch_4/src/slides/sp22/11-Containers.html?print-pdf#/5

Accessing list items (brackets)

Each list item has an index, starting from O.

letters = ['A', 'B', 'C']
Index: 0 1 2

Access each item by putting the index in brackets:

letters[0] # 'A
letters[1] # 'B
letters[2] # 'C
letters[3]
curr_ind = 1

letters [curr_ind] # 'B'

file:///save/berkeley-cs61a/.scratch_4/src/slides/sp22/11-Containers.html?print-pdf#/5

Accessing list items (brackets)

Each list item has an index, starting from O.

letters = ['A', 'B', 'C']
Index: 0 1 2

Access each item by putting the index in brackets:

letters[0] # 'AT
letters[1] # 'B'
letters[2] # 'C!
letters[3] # Error!
curr_ind = 1

letters [curr_ind] # 'B'

file:///save/berkeley-cs61a/.scratch_4/src/slides/sp22/11-Containers.html?print-pdf#/5

Accessing list items (brackets)

Each list item has an index, starting from O.

letters = ['A', 'B', 'C']
Index: 0 1 2

Access each item by putting the index in brackets:

letters[0] # 'AT
letters[1] # 'B'
letters[2] # 'C!
letters[3] # Error!
curr_ind = 1

letters [curr_ind] # 'B'

file:///save/berkeley-cs61a/.scratch_4/src/slides/sp22/11-Containers.html?print-pdf#/5

Accessing list items (brackets)

Each list item has an index, starting from O.

letters = ['A', 'B', 'C']
Index: 0 1 2

Access each item by putting the index in brackets:

letters[0] # 'AT
letters[1] # 'B'
letters[2] # 'C!
letters[3] # Error!
curr_ind = 1

letters [curr_ind] # 'B'

Negative indices are also possible:

letters[-1] # 'C!
letters|[-2] # 'B!
letters|[-4] # Error!

file:///save/berkeley-cs61a/.scratch_4/src/slides/sp22/11-Containers.html?print-pdf#/5

Accessing list items (function)

It's also possible to use a function from the operator
module:

from operator import getitem

getitem(letters, 0)

file:///save/berkeley-cs61a/.scratch_4/src/slides/sp22/11-Containers.html?print-pdf#/6

List concatenation

Add two lists together using the + operator:

boba_prices = [5.50, 6.50, 7.50]
smoothie prices = [7.00, 7.50]
all prices = boba_prices + smoothie_ prices

Or the add function:

from operator import add

boba_prices = [5.50, 6.50, 7.50]
smoothie prices = [7.00, 7.50]
all prices = add(boba_prices, smoothie prices)

file:///save/berkeley-cs61a/.scratch_4/src/slides/sp22/11-Containers.html?print-pdf#/7

List repetition

Concatenate the same list multiple times using the *
operator:

boba_prices = [5.50, 6.50, 7.50]
more_boba = boba_prices * 3
Or the mul function:

from operator import mul

boba_prices = [5.50, 6.50, 7.50]
more_boba = mul (boba_prices, 3)

All together now:

digits = [1,
together = [6, 2, 4] + digits * 2

file:///save/berkeley-cs61a/.scratch_4/src/slides/sp22/11-Containers.html?print-pdf#/8

List repetition

Concatenate the same list multiple times using the *

operator:

boba_prices = [5.50, 6.50, 7.50]
more_boba = boba_prices * 3
Or the mul function:

from operator import mul

boba_prices = [5.50, 6.50, 7.50]
more_boba = mul (boba_prices, 3)

All together now:

digits = [1,
together = [6, 2, 4] + digits * 2 #

file:///save/berkeley-cs61a/.scratch_4/src/slides/sp22/11-Containers.html?print-pdf#/8

Nested Lists

Since Python lists can contain any values, an item can
itself be a list.

gymnasts = [["Brittany", 9.15, 9.4, 9.3, 9.2],
["Lea", 9, 8.8, 9.1, 9.5],
["Maya", 9.2, 8.7, 9.2, 8.8]]

e What's the length of gymnasts?
e What's the length of gymnasts[0]?

file:///save/berkeley-cs61a/.scratch_4/src/slides/sp22/11-Containers.html?print-pdf#/9

Nested Lists

Since Python lists can contain any values, an item can
itself be a list.

gymnasts = [["Brittany", 9.15, 9.4, 9.3, 9.2],
["Lea", 9, 8.8, 9.1, 9.5],
["Maya", 9.2, 8.7, 9.2, 8.8]]

e What's the length of gymnasts? 3
e What's the length of gymnasts[0]?

file:///save/berkeley-cs61a/.scratch_4/src/slides/sp22/11-Containers.html?print-pdf#/9

Nested Lists

Since Python lists can contain any values, an item can
itself be a list.

gymnasts = [["Brittany", 9.15, 9.4, 9.3, 9.2],
["Lea", 9, 8.8, 9.1, 9.5],
["Maya", 9.2, 8.7, 9.2, 8.8]]

e What's the length of gymnasts? 3
e What's the length of gymnasts[0]? 5

file:///save/berkeley-cs61a/.scratch_4/src/slides/sp22/11-Containers.html?print-pdf#/9

Accessing nested list items

gymnasts = [
["Brittany", 9.15, 9.4, 9.3, 9.2],
["Lea", 9, 8.8, 9.1, 9.5],
["Maya", 9.2, 8.7, 9.2, 8.8]

4

]

Access using bracket notation, with more brackets as

needed:

gymnasts [0]
gymnasts [0] [0]
gymnasts [1] [0]
gymnasts [1] [4]
[5]
[

0]

gymnasts [1]
gymnasts [3]

file:///save/berkeley-cs61a/.scratch_4/src/slides/sp22/11-Containers.html?print-pdf#/10

Accessing nested list items

gymnasts = [

["Brittany", 9.15, 9.4, 9.3, 9.2],
["Lea", 9, 8.8, 9.1, 9.5],
["Maya", 9.2, 8.7, 9.2, 8.8]

]

Access using bracket notation, with more brackets as
needed:

gymnasts [0] # ["Brittany", 9.15, 9.4, 9.3, 9.2]
gymnasts [0] [0]
gymnasts [1] [0]
gymnasts [1] [4]
gymnasts [1] [5]
gymnasts [3] [0]

file:///save/berkeley-cs61a/.scratch_4/src/slides/sp22/11-Containers.html?print-pdf#/10

Accessing nested list items

gymnasts = [

["Brittany", 9.15, 9.4, 9.3, 9.2],
["Lea", 9, 8.8, 9.1, 9.5],
["Maya", 9.2, 8.7, 9.2, 8.8]

]

Access using bracket notation, with more brackets as
needed:

gymnasts [0] # ["Brittany", 9.15, 9.4, 9.3, 9.2]
gymnasts [0] [0] # "Brittany"

gymnasts [1] [0]

gymnasts [1] [4]

gymnasts [1] [5]

gymnasts [3] [0]

file:///save/berkeley-cs61a/.scratch_4/src/slides/sp22/11-Containers.html?print-pdf#/10

Accessing nested list items

gymnasts = [

["Brittany", 9.15, 9.4, 9.3, 9.2],
["Lea", 9, 8.8, 9.1, 9.5],
["Maya", 9.2, 8.7, 9.2, 8.8]

]

Access using bracket notation, with more brackets as
needed:

gymnasts [0] # ["Brittany", 9.15, 9.4, 9.3, 9.2]
gymnasts [0] [0] # "Brittany"

gymnasts[1] [0] # "Lea"

gymnasts [1] [4]

gymnasts[1] [5]

gymnasts [3] [0]

file:///save/berkeley-cs61a/.scratch_4/src/slides/sp22/11-Containers.html?print-pdf#/10

Accessing nested list items

gymnasts = [

["Brittany", 9.15, 9.4, 9.3, 9.2],
["Lea", 9, 8.8, 9.1, 9.5],
["Maya", 9.2, 8.7, 9.2, 8.8]

]

Access using bracket notation, with more brackets as
needed:

gymnasts [0] # ["Brittany", 9.15, 9.4, 9.3, 9.2]
gymnasts [0] [0] # "Brittany"

gymnasts[1] [0] # "Lea"

gymnasts [1] [4] # 9.5

gymnasts [1] [5]

gymnasts [3] [0]

file:///save/berkeley-cs61a/.scratch_4/src/slides/sp22/11-Containers.html?print-pdf#/10

Accessing nested list items

gymnasts = [
["Brittany", 9.15, 9.4, 9.3, 9.2],
["Lea", 9, 8.8, 9.1, 9.5],
["Maya", 9.2, 8.7, 9.2, 8.8]

4

]

Access using bracket notation, with more brackets as
needed:

gymnasts [0] # ["Brittany", 9.15, 9.4, 9.3, 9.2]
gymnasts [0] [0] # "Brittany"
gymnasts[1] [0] # "Lea"
gymnasts [1] [4] # 9.5
gymnasts[1] [5] # IndexError!

gymnasts [3] [0]

file:///save/berkeley-cs61a/.scratch_4/src/slides/sp22/11-Containers.html?print-pdf#/10

Accessing nested list items

gymnasts = [

["Brittany", 9.15, 9.4, 9.3, 9.2],
["Lea", 9, 8.8, 9.1, 9.5],
["Maya", 9.2, 8.7, 9.2, 8.8]

]

Access using bracket notation, with more brackets as
needed:

gymnasts [0] # ["Brittany", 9.15, 9.4, 9.3, 9.2]
gymnasts [0] [0] # "Brittany"

gymnasts[1] [0] # "Lea"

gymnasts [1] [4] # 9.5

gymnasts[1] [5] # IndexError!

gymnasts [3] [0] # IndexError!

file:///save/berkeley-cs61a/.scratch_4/src/slides/sp22/11-Containers.html?print-pdf#/10

Containment

file:///save/berkeley-cs61a/.scratch_4/src/slides/sp22/11-Containers.html?print-pdf#/11

Containment operator

Use the in operator to test if value is inside a container:

digits = [2, 8, 3, 1, 8, 5, 3, 0, 7, 1]
1 in digits
3 in digits
4 in digits

not (4 in digits)

file:///save/berkeley-cs61a/.scratch_4/src/slides/sp22/11-Containers.html?print-pdf#/12

Containment operator

Use the in operator to test if value is inside a container:

digits = [2, 8, 3, 1, 8, 5, 3, 0, 7,
1 in digits # True
3 in digits # True
4 in digits # False

not (4 in digits) # True

1]

file:///save/berkeley-cs61a/.scratch_4/src/slides/sp22/11-Containers.html?print-pdf#/12

For statements

file:///save/berkeley-cs61a/.scratch_4/src/slides/sp22/11-Containers.html?print-pdf#/13

For loop

The for loop syntax:

for <value> in <sequence>:
<statement>
<statement>

The for loop provides a cleaner way to write many while
loops, as long as they are iterating over some sort of
sequence.

def count (s, value):
total = 0
for element in s:
if element == value:
total = total + 1
return total

file:///save/berkeley-cs61a/.scratch_4/src/slides/sp22/11-Containers.html?print-pdf#/14

For statement execution procedure

for <name> in <expression>: .
<suite>

1. Evaluate the header <expression>, which must yield an
iterable value (a sequence)

2. For each element in that sequence, in order:
1. Bind <name> to that element in the current frame
2. Execute the <suite>

file:///save/berkeley-cs61a/.scratch_4/src/slides/sp22/11-Containers.html?print-pdf#/15

Looping through nested lists

gymnasts = [

w
O
N

["Brittany", 9.15, 9.4, 9
["Lea", 9, 8.8, 9.1, 9.5],
["Maya", 9.2, 8.7, 9.2, 8

(00}

4

]

Use a nested for-in loop:

for gymnast in gymnasts:
for data in gymnast:
print (data, end="|")

Remember what type of data is being stored in the loop

variable!

file:///save/berkeley-cs61a/.scratch_4/src/slides/sp22/11-Containers.html?print-pdf#/16

Sequence unpacking in for statements

pairs = [[1, 2], [2, 2], [3, 2], [4, 4]1]
same_count = 0

for x, y in pairs:
if x == vy:
same_count = same count + 1

Each name is bound to a value, like in multiple
assignment.

file:///save/berkeley-cs61a/.scratch_4/src/slides/sp22/11-Containers.html?print-pdf#/17

Ranges

file:///save/berkeley-cs61a/.scratch_4/src/slides/sp22/11-Containers.html?print-pdf#/18

The range type

A range represents a sequence of integers.

5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5... .
range (-2, 3)

If just one argument, range starts at O and ends just before it:

for num in range(6) : .
print (num) # 0, 1, 2, 3, 4, 5

If two arguments, range starts at first and ends just before second:

for num in range(l, 6): .
print (num) # 1, 2, 3, 4, 5

file:///save/berkeley-cs61a/.scratch_4/src/slides/sp22/11-Containers.html?print-pdf#/19

List comprehensions

file:///save/berkeley-cs61a/.scratch_4/src/slides/sp22/11-Containers.html?print-pdf#/20

List comprehension syntax

A way to create a new list by "mapping" an existing list.
Short version:

[<map exp> for <name> in <iter exp>]

odds = [1, 3, 5, 7, 9]
evens = [(num + 1) for num in odds]

file:///save/berkeley-cs61a/.scratch_4/src/slides/sp22/11-Containers.html?print-pdf#/21

List comprehension syntax

A way to create a new list by "mapping" an existing list.
Short version:

[<map exp> for <name> in <iter exp>]

odds = [1, 3, 5, 7, 9]

evens = [(num + 1) for num in odds]

Long version (with filter):

[<map exp> for <name> in <iter exp> if <filter exp>]

temps = [60, 65, 71, 67, 77, 89]
hot = [temp for temp in temps if temp > 70]

file:///save/berkeley-cs61a/.scratch_4/src/slides/sp22/11-Containers.html?print-pdf#/21

List comprehension execution procedure

[<map exp> for <name> in <iter exp> if <filter exp>]

e Add a new frame with the current frame as its parent
e Create an empty result list that is the value of the expression
e For each element in the iterable value of <iter exp>:
m Bind <name> to that element in the new frame from step 1
m |[f <filter exp> evaluates to a true value, then add the value of

<map exp> to the result list

letters = ['a', 'b', '¢', '4d', 'e', 'f', 'm', 'n', 'o', 'p'l .
word = [letters[i] for i in [3, 4, 6, 8]1]

"3 View in PythonTutor

https://pythontutor.com/composingprograms.html#code=letters%20%3D%20%5B'a',%20'b',%20'c',%20'd',%20'e',%20'f',%20'm',%20'n',%20'o',%20'p'%5D%0Aword%20%3D%20%5Bletters%5Bi%5D%20for%20i%20in%20%5B3,%204,%206,%208%5D%5D&cumulative=true&curInstr=0&mode=display&origin=composingprograms.js&py=3&rawInputLstJSON=%5B%5D
file:///save/berkeley-cs61a/.scratch_4/src/slides/sp22/11-Containers.html?print-pdf#/22

Exercise: Divisors

def divisors (n):
"wrReturns all the divisors of N.

>>> divisors (12)
[11 21 3! 4’ 6]

file:///save/berkeley-cs61a/.scratch_4/src/slides/sp22/11-Containers.html?print-pdf#/23

Exercise: Divisors (solution)

def divisors (n):

"wrReturns all the divisors of N.

>>> divisors (12)
(1, 2, 3, 4, 6]

return [x for x in range(l, n) if n % x ==

) ==

]

file:///save/berkeley-cs61a/.scratch_4/src/slides/sp22/11-Containers.html?print-pdf#/24

Exercise: Frontloaded

def front (s, f):

"wrReturn S but with elements chosen by F at the front.

>>> front (range(10), lambda x: X % 2 == 1) # odds in front
[1I 3[5[7[9[OI 2[4[6' 8]

file:///save/berkeley-cs61a/.scratch_4/src/slides/sp22/11-Containers.html?print-pdf#/25

Exercise: Frontloaded (solution)

def front(s, f):
"wrReturn S but with elements chosen by F at the front.

>>> front (range(10), lambda x: X % 2 == 1) # odds in front
[1I 3[5[7[9[0I 2[4[6' 8]

return [e for e in s if f(e)] + [e for e in s if not f (e)]

file:///save/berkeley-cs61a/.scratch_4/src/slides/sp22/11-Containers.html?print-pdf#/26

String literals

file:///save/berkeley-cs61a/.scratch_4/src/slides/sp22/11-Containers.html?print-pdf#/27

What's in a string?

Representing data:

'2,400" '2.400'" 'l.2e-5"

Representing language:

"mnse lembra quando a gente
Chegou um dia a acreditar
Que tudo era pra sempre

Sem saber
Que O pra sempre sempre acaba"""

Representing programs:

'curry = lambda f: lambda x: lambda y:

f(x,

y)!

file:///save/berkeley-cs61a/.scratch_4/src/slides/sp22/11-Containers.html?print-pdf#/28

String literals: 3 forms

Single quoted strings and double quoted strings are
equivalent:

"BYF, I am a string, hear me roar ! .

"I've got an apostrophe"

Multi-line strings automatically insert new lines:

impo:

"wnThe Zen of Python
claims, Readability counts.

Read more: import this."""

'The Zen of Python\nclaims, Readability counts.\nRead more:

The \n is an escape sequence signifying a line feed.

file:///save/berkeley-cs61a/.scratch_4/src/slides/sp22/11-Containers.html?print-pdf#/29

Strings are similar to lists

alfabeto = 'abcdefghijklmniiopgrstuvwxyz'
len (alfabeto) # 27
alfabeto[14] + "andu" # nandu

alfabeto + ' ;Ya conoces el ABC!'

file:///save/berkeley-cs61a/.scratch_4/src/slides/sp22/11-Containers.html?print-pdf#/30

Differences between strings & lists

A single-character string is the same as the character
itself.

initial = 'P!'
initial[0] == initial
The in operator will match substrings:

'"W' in 'Where\'s Waldo' # True
'"Waldo' in 'Where\'s wWaldo'

file:///save/berkeley-cs61a/.scratch_4/src/slides/sp22/11-Containers.html?print-pdf#/31

Differences between strings & lists

A single-character string is the same as the character
itself.

initial = 'P!'
initial [0] == initial # True
The in operator will match substrings:

'"W' in 'Where\'s Waldo' # True
'"Waldo' in 'Where\'s wWaldo'

file:///save/berkeley-cs61a/.scratch_4/src/slides/sp22/11-Containers.html?print-pdf#/31

Differences between strings & lists

A single-character string is the same as the character
itself.

initial = 'P!'
initial [0] == initial # True
The in operator will match substrings:

'"W' in 'Where\'s Waldo' # True
"Waldo' in 'Where\'s Waldo' # True

file:///save/berkeley-cs61a/.scratch_4/src/slides/sp22/11-Containers.html?print-pdf#/31

