Higher-Order
Functions

file:///save/berkeley-cs61a/.scratch_6/src/slides/sp22/04-Higher-Order_Functions.html?print-pdf#/

Class outline:

e |teration example

e Designing functions

e Generalization

e Higher-order functions
e Lambda expressions

e Conditional expressions

file:///save/berkeley-cs61a/.scratch_6/src/slides/sp22/04-Higher-Order_Functions.html?print-pdf#/1

lteration example

file:///save/berkeley-cs61a/.scratch_6/src/slides/sp22/04-Higher-Order_Functions.html?print-pdf#/2

Virahanka-Fibonacci numbers

Discovered by Virahanka in India, 600-800 AD, later re-
discovered in Western mathematics and commonly known
as Fibonacci numbers.

file:///save/berkeley-cs61a/.scratch_6/src/slides/sp22/04-Higher-Order_Functions.html?print-pdf#/3

Virahanka-Fibonacci numbers

Discovered by Virahanka in India, 600-800 AD, later re-
discovered in Western mathematics and commonly known
as Fibonacci numbers.

©e+1=1 2 3 5 8 13 21 34

file:///save/berkeley-cs61a/.scratch_6/src/slides/sp22/04-Higher-Order_Functions.html?print-pdf#/3

Virahanka-Fibonacci numbers

Discovered by Virahanka in India, 600-800 AD, later re-
discovered in Western mathematics and commonly known
as Fibonacci numbers.

file:///save/berkeley-cs61a/.scratch_6/src/slides/sp22/04-Higher-Order_Functions.html?print-pdf#/3

Virahanka-Fibonacci numbers

Discovered by Virahanka in India, 600-800 AD, later re-
discovered in Western mathematics and commonly known
as Fibonacci numbers.

0] 1 1l +2 =3 5 8 13 21 34

file:///save/berkeley-cs61a/.scratch_6/src/slides/sp22/04-Higher-Order_Functions.html?print-pdf#/3

Virahanka-Fibonacci numbers

Discovered by Virahanka in India, 600-800 AD, later re-
discovered in Western mathematics and commonly known
as Fibonacci numbers.

0 1 1 2 +3 =5 8 13 21 34

file:///save/berkeley-cs61a/.scratch_6/src/slides/sp22/04-Higher-Order_Functions.html?print-pdf#/3

Virahanka-Fibonacci numbers

Discovered by Virahanka in India, 600-800 AD, later re-
discovered in Western mathematics and commonly known
as Fibonacci numbers.

0 1 1 2 3 +5 =8 13 21 34

file:///save/berkeley-cs61a/.scratch_6/src/slides/sp22/04-Higher-Order_Functions.html?print-pdf#/3

Virahanka-Fibonacci numbers

Discovered by Virahanka in India, 600-800 AD, later re-
discovered in Western mathematics and commonly known
as Fibonacci numbers.

0 1 1 2 3 5 +8 =13 21 34

file:///save/berkeley-cs61a/.scratch_6/src/slides/sp22/04-Higher-Order_Functions.html?print-pdf#/3

Virahanka-Fibonacci numbers

Discovered by Virahanka in India, 600-800 AD, later re-
discovered in Western mathematics and commonly known
as Fibonacci numbers.

0 1 1 2 3 5 8 +13 =21 34

file:///save/berkeley-cs61a/.scratch_6/src/slides/sp22/04-Higher-Order_Functions.html?print-pdf#/3

Virahanka-Fibonacci numbers

Discovered by Virahanka in India, 600-800 AD, later re-
discovered in Western mathematics and commonly known
as Fibonacci numbers.

0 1 1 2 3 5 8 13 + 21 = 34

file:///save/berkeley-cs61a/.scratch_6/src/slides/sp22/04-Higher-Order_Functions.html?print-pdf#/3

Virahanka's question

How many poetic meters exist for a total duration?

S = short syllable, L = long syllable

Duration Meters Total
1 S 1
2 SS, L 2
3 SSS, SL, LS 3
4 SSSS, SSL, SLS, LSS, LL 5
5 SSSSS, SSSL, SSLS, SLSS, SLL, LLS, 8

LSL, LSSS

The So-called Fibonacci Numbers in Ancient and Medieval India

http://www.sfs.uni-tuebingen.de/~dg/sdarticle.pdf
file:///save/berkeley-cs61a/.scratch_6/src/slides/sp22/04-Higher-Order_Functions.html?print-pdf#/4

Fibonacci's question

How many pairs of rabbits can be bred after N months?

https://commons.wikimedia.org/wiki/File:Fibonacci_lapins_2.svg
file:///save/berkeley-cs61a/.scratch_6/src/slides/sp22/04-Higher-Order_Functions.html?print-pdf#/5

Virahanka-Fibonacci number generation

VE 0 1 1 2 3 5 8 13 21 34 55 ..
N O 1 2 3 4 5 6 7 8 9 10 .

def vf number (n) :
"mucCompute the nth Virahanka-Fibonacci number, for N >= 1.
>>> vf_ number (2)

1
>>> vf number (6)
8
prev = 0 # First Fibonacci number
curr = 1 # Second Fibonacci number
k=1
while k < n:
(prev, curr) = (curr, prev + curr)
k += 1

return curr

file:///save/berkeley-cs61a/.scratch_6/src/slides/sp22/04-Higher-Order_Functions.html?print-pdf#/6

Golden spiral

The Golden spiral can be approximated by Virahanka-
Fibonacci numbers.

13x13

21x21

8x8

file:///save/berkeley-cs61a/.scratch_6/src/slides/sp22/04-Higher-Order_Functions.html?print-pdf#/7

Go bears!

The Golden spiral is found everywhere in nature...

file:///save/berkeley-cs61a/.scratch_6/src/slides/sp22/04-Higher-Order_Functions.html?print-pdf#/8

Designing Functions

file:///save/berkeley-cs61a/.scratch_6/src/slides/sp22/04-Higher-Order_Functions.html?print-pdf#/9

Describing Functions

def square (x) :
"wWNReturns the square of X.m"nmrn
return x * x

Aspect

Example

A function's domain is the set of all inputs
it might possibly take as arguments.

X is a number

A function's range is the set of output
values it might possibly return.

square returns a
non-negative real
number

A pure function's behavior is the
relationship it creates between input and
output.

square returns the
square of x

file:///save/berkeley-cs61a/.scratch_6/src/slides/sp22/04-Higher-Order_Functions.html?print-pdf#/10

Designing a function

Give each function exactly one job, but make it apply to
many related situations.

round (1.23) # 1
round(1.23, 0) # 1
round (1.23, 1) # 1.2
round (1.23, 5) # 1.23

Don't Repeat Yourself (DRY): Implement a process just
once, execute it many times.

file:///save/berkeley-cs61a/.scratch_6/src/slides/sp22/04-Higher-Order_Functions.html?print-pdf#/11

Generalization

file:///save/berkeley-cs61a/.scratch_6/src/slides/sp22/04-Higher-Order_Functions.html?print-pdf#/12

Generalizing patterns with arguments

Geometric shapes have similar area formulas.

Shape | |
3v3
Area 1 %72 T ok \2/_ * 7

file:///save/berkeley-cs61a/.scratch_6/src/slides/sp22/04-Higher-Order_Functions.html?print-pdf#/13

A non-generalized approach

from math import pi, sqgrt

def area square(r) :
return r * r

def area circle(r) :
return r * r * pi

def area hexagon(r) :
return r * r * (3 * sqgrt(3) / 2)

How can we generalize the common structure?

file:///save/berkeley-cs61a/.scratch_6/src/slides/sp22/04-Higher-Order_Functions.html?print-pdf#/14

Generalized area function

from math import pi, sqgrt

def area(r, shape_constant) :
"wnReturn the area of a shape from length measurement R."""
if r < 0:
return O
return r * r * shape constant

def area_ square(r) :
return area(r, 1)

def area circle(r):
return area(r, pi)

def area hexagon(r) :
return area(r, 3 * sqrt(3) / 2)

file:///save/berkeley-cs61a/.scratch_6/src/slides/sp22/04-Higher-Order_Functions.html?print-pdf#/15

Higher-order functions

file:///save/berkeley-cs61a/.scratch_6/src/slides/sp22/04-Higher-Order_Functions.html?print-pdf#/16

What are higher-order functions?

A function that either:

e Takes another function as an argument
e Returns a function as its result

All other functions are considered first-order functions.

file:///save/berkeley-cs61a/.scratch_6/src/slides/sp22/04-Higher-Order_Functions.html?print-pdf#/17

Generalizing over computational processes

k=14+24+34+4+5=15

&
I o
—

ot

k3 =13+ 2%+ 3%+ 4%+ 5% =225

i
—

ot

8
(4k — 3) - (4k — 1)

3 35 99 195 323

=

=1

The common structure among functions may be a
computational process, not just a number.

file:///save/berkeley-cs61a/.scratch_6/src/slides/sp22/04-Higher-Order_Functions.html?print-pdf#/18

Functions as arguments

def

def

cube (k) :
return k ** 3

summation (n, term):

"nirsum the first N terms of a sequence.

>>> gummation (5, cube)

225

total = 0

k =1

while k <= n:
total = total + term(k)
k =%k +1

return total

file:///save/berkeley-cs61a/.scratch_6/src/slides/sp22/04-Higher-Order_Functions.html?print-pdf#/19

Functions as return values

file:///save/berkeley-cs61a/.scratch_6/src/slides/sp22/04-Higher-Order_Functions.html?print-pdf#/20

Locally defined functions

Functions defined within other function bodies are bound

to names in a local frame.

def make_ adder (n) :
"nrReturn a function that takes one argument k
and returns k + n.
>>> add_three = make_adder (3)
>>> add_three (4)
7
def adder (k) :
return k + n
return adder

file:///save/berkeley-cs61a/.scratch_6/src/slides/sp22/04-Higher-Order_Functions.html?print-pdf#/21

Call expressions as operator expressions

make adder (1) (2

Operator Operand

file:///save/berkeley-cs61a/.scratch_6/src/slides/sp22/04-Higher-Order_Functions.html?print-pdf#/22

Call expressions as operator expressions

make adder (1) (2

Operator Operand

make adder (1)

file:///save/berkeley-cs61a/.scratch_6/src/slides/sp22/04-Higher-Order_Functions.html?print-pdf#/22

Call expressions as operator expressions

make adder (1) (2

Operator Operand

make adder (1)

func make adder...

file:///save/berkeley-cs61a/.scratch_6/src/slides/sp22/04-Higher-Order_Functions.html?print-pdf#/22

Call expressions as operator expressions

make adder (1) (2

Operator Operand

make adder (1)

func make adder... 1

file:///save/berkeley-cs61a/.scratch_6/src/slides/sp22/04-Higher-Order_Functions.html?print-pdf#/22

Call expressions as operator expressions

make adder (1) (2)

Operator Operand

make adder (1)

func make adder... 1 } make_adder (n)
— def adder (k) :

return k + n } fur

return adder

file:///save/berkeley-cs61a/.scratch_6/src/slides/sp22/04-Higher-Order_Functions.html?print-pdf#/22

Call expressions as operator expressions

make adder (1) (2)

Operator Operand

func adder(k) 2P Gl I
make adder (1) IR

‘ ~

func make adder... 1 } make_adder (n)
— def adder (k) :

return k + n } fur

return adder

file:///save/berkeley-cs61a/.scratch_6/src/slides/sp22/04-Higher-Order_Functions.html?print-pdf#/22

Call expressions as operator expressions

make adder (1) (2)

Operator Operand

func adder(k) 2P Gl I 2
make adder (1) IR

‘ ~

func make adder... 1 } make_adder (n)
— def adder (k) :

return k + n } fur

return adder

file:///save/berkeley-cs61a/.scratch_6/src/slides/sp22/04-Higher-Order_Functions.html?print-pdf#/22

Call expressions as operator expressions

make adder (1) (2)

Operator Operand

func adder(k) 2P Gl I 2
make adder (1) IR

‘ ~

func make adder... 1 } make_adder (n)
— def adder (k) :

return k + n } fur

return adder

file:///save/berkeley-cs61a/.scratch_6/src/slides/sp22/04-Higher-Order_Functions.html?print-pdf#/22

Lambda expressions

file:///save/berkeley-cs61a/.scratch_6/src/slides/sp22/04-Higher-Order_Functions.html?print-pdf#/23

Lambda syntax

A lambda expression is a simple function definition that
evaluates to a function.

The syntax:

lambda <parameters>: <expression>

A function that takes in parameters and returns the result
of expression.

file:///save/berkeley-cs61a/.scratch_6/src/slides/sp22/04-Higher-Order_Functions.html?print-pdf#/24

Lambda syntax

A lambda expression is a simple function definition that
evaluates to a function.

The syntax:

lambda <parameters>: <expression>

A function that takes in parameters and returns the result
of expression.

A lambda version of the square function:
square = lambda x: X * X

A function that takes in parameter x and returns the
result of x * x.

file:///save/berkeley-cs61a/.scratch_6/src/slides/sp22/04-Higher-Order_Functions.html?print-pdf#/24

Lambda syntax tips

A lambda expression does not contain return statements
or any statements at all.

Incorrect:

square = lambda x: return x * x

Correct:

sqgquare = lambda x: x * X

file:///save/berkeley-cs61a/.scratch_6/src/slides/sp22/04-Higher-Order_Functions.html?print-pdf#/25

Def statements vs. Lambda expressions

def square(x): VS square = lambda x: x * X
return x * X

Both create a function with the same domain, range, and behavior.

Both bind that function to the name square.

Only the def statement gives the
function an intrinsic name, which
shows up in environment diagrams
but doesn't affect execution
(unless the function is printed).

file:///save/berkeley-cs61a/.scratch_6/src/slides/sp22/04-Higher-Order_Functions.html?print-pdf#/26

Lambda as argument

It's convenient to use a lambda expression when you are
passing in a simple function as an argument to another
function.

Instead of...

def cube (k) :
return k ** 3

summation (5, cube)

We can use a lambda:

summation (5, lambda k: k ** 3)

file:///save/berkeley-cs61a/.scratch_6/src/slides/sp22/04-Higher-Order_Functions.html?print-pdf#/27

Conditional expressions

file:///save/berkeley-cs61a/.scratch_6/src/slides/sp22/04-Higher-Order_Functions.html?print-pdf#/28

Conditional expressions

A conditional expression has the form:

<consequent> 1f <predicate> else <alternative>

Evaluation rule:

e Evaluate the <predicate> expression.

o If it's a true value, the value of the whole expression is
the value of the <consequent>.

e Otherwise, the value of the whole expression is the
value of the <alternative>.

file:///save/berkeley-cs61a/.scratch_6/src/slides/sp22/04-Higher-Order_Functions.html?print-pdf#/29

Lambdas with conditionals

This is invalid syntax:

lambda x: if x > 0: x else: 0

Conditional expressions to the rescue!

lambda x: x 1if x > 0 else 0

file:///save/berkeley-cs61a/.scratch_6/src/slides/sp22/04-Higher-Order_Functions.html?print-pdf#/30

